论文标题

密码生成的生成深度学习技术

Generative Deep Learning Techniques for Password Generation

论文作者

Biesner, David, Cvejoski, Kostadin, Georgiev, Bogdan, Sifa, Rafet, Krupicka, Erik

论文摘要

最近,通过深入学习的密码猜测方法在产生新颖,现实的密码候选者的能力方面取得了重大突破。在目前的工作中,我们根据密码猜测研究了广泛的深度学习和基于概率的模型:基于注意力的深度神经网络,自动编码机制和生成的对抗性网络。我们提供了新颖的生成深度学习模型,以表现出最先进的采样性能的变异自动编码器,从而产生其他潜在空间特征,例如插值和靶向采样。最后,我们在众所周知的数据集(Rockyou,LinkedIn,Youku,Zomato,pwnd)的统一受控框架中进行了彻底的经验分析。我们的结果不仅确定了由深度神经网络驱动的最有希望的方案,而且还说明了每种方法的优势在发电性变异性和样本唯一性方面。

Password guessing approaches via deep learning have recently been investigated with significant breakthroughs in their ability to generate novel, realistic password candidates. In the present work we study a broad collection of deep learning and probabilistic based models in the light of password guessing: attention-based deep neural networks, autoencoding mechanisms and generative adversarial networks. We provide novel generative deep-learning models in terms of variational autoencoders exhibiting state-of-art sampling performance, yielding additional latent-space features such as interpolations and targeted sampling. Lastly, we perform a thorough empirical analysis in a unified controlled framework over well-known datasets (RockYou, LinkedIn, Youku, Zomato, Pwnd). Our results not only identify the most promising schemes driven by deep neural networks, but also illustrate the strengths of each approach in terms of generation variability and sample uniqueness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源