论文标题

代数多重性的新分析和几何方面

New Analytical and Geometrical Aspects of the Algebraic Multiplicity

论文作者

López-Gómez, Julián, Sampedro, Juan Carlos

论文摘要

本文揭示了[7,5]中引入的广义代数多样性的一些新的分析和几何特性,即$χ$,并在[20,23,24]中进一步开发。特别是,它在$χ$和代数变种的局部交叉点索引概念之间建立了一个全新的联系,这是代数几何的中心设备。非线性光谱理论与代数几何形状之间的这种联系为$χ$提供了深刻的几何含义。此外,$χ$是通过与线性路径相关的Schur操作员的新概念来表征的。

This paper reveals some new analytical and geometrical properties of the generalized algebraic multiplicity, $χ$, introduced in [7, 5] and further developed in [20, 23, 24]. In particular, it establishes a completely new connection between $χ$ and the concept of local intersection index of algebraic varieties, a central device in Algebraic Geometry. This link between Nonlinear Spectral Theory and Algebraic Geometry provides to $χ$ with a deep geometrical meaning. Moreover, $χ$ is characterized through the new notion of local determinant of the Schur operator associated to the linear path, $\mathfrak{L}(λ)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源