论文标题

各向异性表面扩散的能量稳定参数有限元法

An energy-stable parametric finite element method for anisotropic surface diffusion

论文作者

Li, Yifei, Bao, Weizhu

论文摘要

我们提出了一种能量稳定的参数有限元方法(ES-PFEM),以将表面扩散下的封闭曲线与各向异性表面能量$γ(θ)$ - 各向异性表面扩散 - 在两个维度上 - $θ$是$θ$是向外单位正常矢量和垂直轴之间的角度。通过引入正定的表面能(密度)矩阵$ g(θ)$,我们为各向异性表面扩散提供了一种新的简单变分配方,并证明它满足了面积/质量保护和能量消散。通过参数有限元法和面积/质量保护和能量耗散在空间中离散化的变化问题是为半差异化的。然后,该问题通过(半幅)向后的Euler方法进一步离散,因此只能在每个时间步骤中求解一个线性系统以进行全面策划,因此它是有效的。我们建立了全面策划的良好性,并在$γ(θ)$上确定一些简单的条件,以使全饮食能够保持能量耗散,因此它是无条件的能量稳定的。最后,将ES-PFEM应用于模拟具有各向异性表面能的薄膜的固态侵蚀,即在各向异性表面扩散下开放曲线在沿水平底物移动的两个三重点处的开放曲线运动。据报道,数值结果证明了所提出的ES-PFEM的效率和准确性以及能量耗散。

We propose an energy-stable parametric finite element method (ES-PFEM) to discretize the motion of a closed curve under surface diffusion with an anisotropic surface energy $γ(θ)$ -- anisotropic surface diffusion -- in two dimensions, while $θ$ is the angle between the outward unit normal vector and the vertical axis. By introducing a positive definite surface energy (density) matrix $G(θ)$, we present a new and simple variational formulation for the anisotropic surface diffusion and prove that it satisfies area/mass conservation and energy dissipation. The variational problem is discretized in space by the parametric finite element method and area/mass conservation and energy dissipation are established for the semi-discretization. Then the problem is further discretized in time by a (semi-implicit) backward Euler method so that only a linear system is to be solved at each time step for the full-discretization and thus it is efficient. We establish well-posedness of the full-discretization and identify some simple conditions on $γ(θ)$ such that the full-discretization keeps energy dissipation and thus it is unconditionally energy-stable. Finally the ES-PFEM is applied to simulate solid-state dewetting of thin films with anisotropic surface energies, i.e. the motion of an open curve under anisotropic surface diffusion with proper boundary conditions at the two triple points moving along the horizontal substrate. Numerical results are reported to demonstrate the efficiency and accuracy as well as energy dissipation of the proposed ES-PFEM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源