论文标题

最佳bang-bang方案中的拓扑和几何模式,用于各种量子算法:在方格上应用于$ xxz $模型

Topological and geometric patterns in optimal bang-bang protocols for variational quantum algorithms: application to the $XXZ$ model on the square lattice

论文作者

Scoggins, Matthew T., Rahmani, Armin

论文摘要

在这项工作中,我们解决了使用变异量子算法将系统带到多体汉密尔顿人的基础状态的变异最佳方案中的模式的挑战。我们开发了高度优化的经典蒙特卡洛(MC)算法,以找到用于有限系统大小的方形存在XXZ模型之间转换的最佳协议。 MC方法获得了最低原则的预测,获得了最佳的Bang-Bang协议。我们确定达到不同系统大小的可接受误差所需的最小时间,这是初始和目标状态的函数,并发现总时间与波功能重叠之间的相关性。我们确定最佳协议的动力学相图,其不同阶段的特征是拓扑数,即脉冲的数量。分叉转变是最初和最终状态的函数,与最佳协议中的新跳跃相关,将这些不同的阶段划分。脉冲的数量与总进化时间相关。除了确定上面的拓扑特征,即脉冲的数量外,我们还引入了相关函数,以表征Bang-Bang协议的定量几何相似性。我们发现,在一个阶段内的协议确实在几何上相关。在这些协议中识别和推断模式可能会为量子设备上有效的大规模模拟提供信息。

In this work, we address the challenge of uncovering patterns in variational optimal protocols for taking the system to ground states of many-body Hamiltonians, using variational quantum algorithms. We develop highly optimized classical Monte Carlo (MC) algorithms to find the optimal protocols for transformations between the ground states of the square-lattice XXZ model for finite systems sizes. The MC method obtains optimal bang-bang protocols, as predicted by Pontryagin's minimum principle. We identify the minimum time needed for reaching an acceptable error for different system sizes as a function of the initial and target states and uncover correlations between the total time and the wave-function overlap. We determine a dynamical phase diagram for the optimal protocols, with different phases characterized by a topological number, namely the number of on-pulses. Bifurcation transitions as a function of initial and final states, associated with new jumps in the optimal protocols, demarcate these different phases. The number of pulses correlates with the total evolution time. In addition to identifying the topological characteristic above, i.e., the number of pulses, we introduce a correlation function to characterize bang-bang protocols' quantitative geometric similarities. We find that protocols within one phase are indeed geometrically correlated. Identifying and extrapolating patterns in these protocols may inform efficient large-scale simulations on quantum devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源