论文标题

Neural-warm2:使用学识渊博的互动对异质多旋球群的计划和控制

Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms using Learned Interactions

论文作者

Shi, Guanya, Hönig, Wolfgang, Shi, Xichen, Yue, Yisong, Chung, Soon-Jo

论文摘要

我们提出了神经舒适2,这是一种基于学习的运动计划和控制方法,可允许群中的异质多旋转器在紧密的接近度中安全飞行。由于复杂的空气动力相互作用力,例如附近无人机产生的倾斜和地面效应,因此对无人机的这种操作具有挑战性。传统的计划和控制方法忽略了捕获这些相互作用的力量,从而导致飞行过程中稀疏的群配置。我们的方法将基于物理学的名义动力学模型与具有强大Lipschitz特性的学习深度神经网络(DNN)结合在一起。我们利用两种技术来准确预测异质多电流之间的空气动力相互作用:i)光谱归一化,以确保稳定性和概括性数据的保证和ii)支持任何数量的异质性邻居,以降低无效的方式,而无需降低表达能力。学识渊博的残差动力学使所提出的相互作用的多机器人运动计划和非线性跟踪控制设计都受益,因为学习的交互作用减少了建模误差。实验结果表明,神经损害2能够推广到训练案例以外的较大群体,并明显优于基线非线性跟踪控制器,而最坏情况下的跟踪误差最多降低了三倍。

We present Neural-Swarm2, a learning-based method for motion planning and control that allows heterogeneous multirotors in a swarm to safely fly in close proximity. Such operation for drones is challenging due to complex aerodynamic interaction forces, such as downwash generated by nearby drones and ground effect. Conventional planning and control methods neglect capturing these interaction forces, resulting in sparse swarm configuration during flight. Our approach combines a physics-based nominal dynamics model with learned Deep Neural Networks (DNNs) with strong Lipschitz properties. We make use of two techniques to accurately predict the aerodynamic interactions between heterogeneous multirotors: i) spectral normalization for stability and generalization guarantees of unseen data and ii) heterogeneous deep sets for supporting any number of heterogeneous neighbors in a permutation-invariant manner without reducing expressiveness. The learned residual dynamics benefit both the proposed interaction-aware multi-robot motion planning and the nonlinear tracking control design because the learned interaction forces reduce the modelling errors. Experimental results demonstrate that Neural-Swarm2 is able to generalize to larger swarms beyond training cases and significantly outperforms a baseline nonlinear tracking controller with up to three times reduction in worst-case tracking errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源