论文标题

用于数据稀疏NLU中注释数据增强的生成对抗网络

Generative Adversarial Networks for Annotated Data Augmentation in Data Sparse NLU

论文作者

Golovneva, Olga, Peris, Charith

论文摘要

数据稀疏性是与自然语言理解中的模型发展(NLU)相关的关键挑战之一。对监督学习通常需要的高质量注释的话语的需求使挑战更加复杂,这通常导致数周的手动劳动和高昂的成本。在本文中,我们通过使用顺序生成对抗网络(GAN)来提高NLU模型性能来提高NLU模型性能。我们在两个任务的上下文中探索数据生成,即新语言的引导以及低资源功能的处理。对于这两个任务,我们探索了三个连续的gan架构,一个具有令牌级奖励功能,另一个具有我们自己的代币级蒙特卡洛推出奖励,而第三个具有句子级别的奖励。我们评估了这些反馈模型在几种采样方法中的性能,并将我们的结果与将原始数据升级到相同的量表进行比较。我们通过转移验证的嵌入方式进一步提高了GAN模型性能。我们的实验揭示了使用顺序生成对抗网络生成的合成数据可为多个指标提供显着的性能提升,并且可能是NLU任务的主要好处。

Data sparsity is one of the key challenges associated with model development in Natural Language Understanding (NLU) for conversational agents. The challenge is made more complex by the demand for high quality annotated utterances commonly required for supervised learning, usually resulting in weeks of manual labor and high cost. In this paper, we present our results on boosting NLU model performance through training data augmentation using a sequential generative adversarial network (GAN). We explore data generation in the context of two tasks, the bootstrapping of a new language and the handling of low resource features. For both tasks we explore three sequential GAN architectures, one with a token-level reward function, another with our own implementation of a token-level Monte Carlo rollout reward, and a third with sentence-level reward. We evaluate the performance of these feedback models across several sampling methodologies and compare our results to upsampling the original data to the same scale. We further improve the GAN model performance through the transfer learning of the pretrained embeddings. Our experiments reveal synthetic data generated using the sequential generative adversarial network provides significant performance boosts across multiple metrics and can be a major benefit to the NLU tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源