论文标题

关于人工神经网络中的结合问题

On the Binding Problem in Artificial Neural Networks

论文作者

Greff, Klaus, van Steenkiste, Sjoerd, Schmidhuber, Jürgen

论文摘要

当代神经网络仍然没有人类水平的概括,这远远超出了我们的直接经验。在本文中,我们认为这种缺点的根本原因是它们无法动态,灵活地绑定在整个网络中分布的信息。这个约束性问题会影响他们以符号式实体(如对象)为角度获得对世界的组成理解的能力,这对于以可预测和系统的方式概括至关重要。为了解决这个问题,我们提出了一个统一的框架,该框架围绕着从非结构化的感觉输入(隔离)中形成有意义的实体,将信息分离在表示层面(表示)(表示),并使用这些实体来构建新的推论,预测,预测和行为和行为(组成)。我们的分析从神经科学和认知心理学方面的大量研究中汲取灵感,并从机器学习文献中调查相关机制,以帮助确定诱导性偏见的组合,从而使象征性信息处理在神经网络中自然出现。我们认为,就基于符号的表示而言,对AI的组成方法对于实现人类水平的概括至关重要,我们希望本文可以作为参考和灵感有助于该目标。

Contemporary neural networks still fall short of human-level generalization, which extends far beyond our direct experiences. In this paper, we argue that the underlying cause for this shortcoming is their inability to dynamically and flexibly bind information that is distributed throughout the network. This binding problem affects their capacity to acquire a compositional understanding of the world in terms of symbol-like entities (like objects), which is crucial for generalizing in predictable and systematic ways. To address this issue, we propose a unifying framework that revolves around forming meaningful entities from unstructured sensory inputs (segregation), maintaining this separation of information at a representational level (representation), and using these entities to construct new inferences, predictions, and behaviors (composition). Our analysis draws inspiration from a wealth of research in neuroscience and cognitive psychology, and surveys relevant mechanisms from the machine learning literature, to help identify a combination of inductive biases that allow symbolic information processing to emerge naturally in neural networks. We believe that a compositional approach to AI, in terms of grounded symbol-like representations, is of fundamental importance for realizing human-level generalization, and we hope that this paper may contribute towards that goal as a reference and inspiration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源