论文标题
动态系统细分以进行信息测量
Dynamical System Segmentation for Information Measures in Motion
论文作者
论文摘要
动议带有有关正在执行的基础任务的信息。人类运动分析中的先前工作表明,复杂的运动可能是由称为Movemes的基本材料的组成而产生的。运动中有限结构的存在激发了信息理论方法进行运动分析和机器人援助。我们将任务实施例定义为代理动作中编码的任务信息的量。通过解码特定于任务的信息,我们可以使用任务实施例来创建详细的绩效评估。我们提取一个包含动作的行为字母,其中没有\ textit {a先验{先验}知识,使用新算法,我们称之为动态系统分割。对于给定的任务,我们指定最佳代理,并计算代表任务的行为字母。我们从代理执行中确定数据中的这些行为,并使用Kullback-Leibler差异将其相对频率与最佳代理的相对频率进行比较。我们使用执行动态任务的人类受试者的数据集(n = 53)来验证这种方法,并在此措施下发现获得援助的个人可以更好地体现任务。此外,我们发现任务实施例比集成的于点纠纷更好地预测了援助。
Motions carry information about the underlying task being executed. Previous work in human motion analysis suggests that complex motions may result from the composition of fundamental submovements called movemes. The existence of finite structure in motion motivates information-theoretic approaches to motion analysis and robotic assistance. We define task embodiment as the amount of task information encoded in an agent's motions. By decoding task-specific information embedded in motion, we can use task embodiment to create detailed performance assessments. We extract an alphabet of behaviors comprising a motion without \textit{a priori} knowledge using a novel algorithm, which we call dynamical system segmentation. For a given task, we specify an optimal agent, and compute an alphabet of behaviors representative of the task. We identify these behaviors in data from agent executions, and compare their relative frequencies against that of the optimal agent using the Kullback-Leibler divergence. We validate this approach using a dataset of human subjects (n=53) performing a dynamic task, and under this measure find that individuals receiving assistance better embody the task. Moreover, we find that task embodiment is a better predictor of assistance than integrated mean-squared-error.