论文标题

来自Eumetsat极性系统的全球植被生物物理参数的推导

Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

论文作者

García-Haro, Francisco Javier, Campos-Taberner, Manuel, Muñoz-Marí, Jordi, Laparra, Valero, Camacho, Fernando, Sanchez-Zapero, Jorge, Camps-Valls, Gustau

论文摘要

This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High-Resolution Radiometer) sensor onboard MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). LSA-SAF EPS植被产品的套件包括叶子面积指数(LAI),分数植被覆盖(FVC)和吸收的光合作用活动辐射(FAPAR)的比例。 LAI,FAPAR和FVC表征了植被的结构和功能,并且是广泛的土地生物界应用的关键参数。该算法基于一种混合方法,该方法将物理辐射转移模型提供的概括功能与机器学习方法的准确性和计算效率相结合。一个主要特征是实施能够共同且更稳定地估算所有生物物理参数的多输出检索方法。我们提出了一种多输出高斯工艺回归(GPRMULTI),该过程表现优于其他考虑的方法(前景和帆的耦合(通过任意倾斜的叶子散射)辐射转移模型)EPS模拟。全局EPS产品包括检索方法捕获的不确定性和输入误差传播所捕获的不确定性估计。 EPS植被产品的一致生成和分布将构成监测地面动态过程的宝贵工具。

This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High-Resolution Radiometer) sensor onboard MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input error propagation. The consistent generation and distribution of the EPS vegetation products will constitute a valuable tool for monitoring of earth surface dynamic processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源