论文标题

将记录截止在阴影禁令上

Setting the Record Straighter on Shadow Banning

论文作者

Merrer, Erwan Le, Morgan, Benoit, Trédan, Gilles

论文摘要

阴影禁令是由在线社交网络组成的,以限制其某些用户的可见性,而没有意识到它。 Twitter声明它不使用这种练习,有时会争论“错误”以证明对某些用户的限制是合理的。本文是第一个通过采用统计和图形拓扑方法来解决在主要在线平台上在主要在线平台上禁止阴影的合理性的。我们首先进行了广泛的数据收集和分析活动,收集了对用户资料的可见性限制的发生(我们爬行超过250万)。在这样的黑框观察设置中,我们突出显示了可能解释禁令实践(使用机器学习预测指标)的显着用户配置文件。然后,我们对该现象提出了两个假设:i)局限性是漏洞,如Twitter所声称的,ii)禁止在用户互动的自我冲突中传播的阴影传播。我们表明假设i)在统计上对我们收集的数据不太可能。然后,我们显示了与假设II)的一些有趣的相关性,这表明交互拓扑是一个很好的指示,表明了该服务中存在一组阴影用户。

Shadow banning consists for an online social network in limiting the visibility of some of its users, without them being aware of it. Twitter declares that it does not use such a practice, sometimes arguing about the occurrence of "bugs" to justify restrictions on some users. This paper is the first to address the plausibility or not of shadow banning on a major online platform, by adopting both a statistical and a graph topological approach. We first conduct an extensive data collection and analysis campaign, gathering occurrences of visibility limitations on user profiles (we crawl more than 2.5 million of them). In such a black-box observation setup, we highlight the salient user profile features that may explain a banning practice (using machine learning predictors). We then pose two hypotheses for the phenomenon: i) limitations are bugs, as claimed by Twitter, and ii) shadow banning propagates as an epidemic on user-interactions ego-graphs. We show that hypothesis i) is statistically unlikely with regards to the data we collected. We then show some interesting correlation with hypothesis ii), suggesting that the interaction topology is a good indicator of the presence of groups of shadow banned users on the service.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源