论文标题
一种新的玻色子方法,用于在偶数核中摇摆运动
A new boson approach for the wobbling motion in even-odd nuclei
论文作者
论文摘要
由于从高j轨道上偶联的奇质子偶联,将围绕中轴旋转的三轴芯(即2轴)绕了1轴。使用角动量成分的新且复杂的玻色子膨胀的Bargmann表示,模型汉密尔顿模型的特征值方程获得了具有完全分离的动能的Schrödinger形式。从临界角动量中,势能项表现出三个最小值,其中两个是退化的。最深井的光谱反映了手性的结构。分别在谐波近似中分析表达对应于最深和局部最小值的能量。基于经典分析,构建了相图。还表明横向摇摆模式不稳定。对应于最低最小值的摇摆频率用于定量描述$^{135} $ pr中的摆动属性。能量和E.M.描述了过渡概率。
A triaxial core rotating around the middle axis, i.e. 2-axis, is cranked around the 1-axis, due to the coupling of an odd proton from a high j orbital. Using the Bargmann representation of a new and complex boson expansion of the angular momentum components, the eigenvalue equation of the model Hamiltonian acquires a Schrödinger form with a fully separated kinetic energy. From a critical angular momentum, the potential energy term exhibits three minima, two of them being degenerate. Spectra of the deepest wells reflects a chiral-like structure. Energies corresponding to the deepest and local minima respectively, are analytically expressed within a harmonic approximation. Based on a classical analysis, a phase diagram is constructed. It is also shown that the transverse wobbling mode is unstable. The wobbling frequencies corresponding to the deepest minimum are used to quantitatively describe the wobbling properties in $^{135}$Pr. Both energies and e.m. transition probabilities are described.