论文标题
抽象数字系统中的常规序列和同步序列
Regular sequences and synchronized sequences in abstract numeration systems
论文作者
论文摘要
Maes和Rigo在2002年将$ b $的序列的概念推广到抽象的计数系统。它们的定义基于$ \ nathcal {s} $ - 内核的概念,该概念扩展了$ b $ -KERNEL的概念。但是,此定义不允许我们概括$ b $的序列的所有特征。在本文中,我们提供了$ \ Mathcal {s} $ - 内核的另一种定义,因此是$ \ Mathcal {s} $ - 常规序列的替代定义,这使我们能够使用可识别的正式系列来推广大多数(如果不是全部)已知的$ B $ - temartivation $ b $ - temartivation $ b $ - temartivation temart-b $ - temartivation temartization $ b $ - groum-regormular序列摘要数字系统。然后,我们将$ \ Mathcal {s} $ - 自动序列的两个特征作为$ \ Mathcal {S} $ - 常规序列。接下来,我们提出一种通用方法,以获取$ \ MATHCAL {S} $的各种家庭,通过枚举$ \ Mathcal {S} $ - $ \ Mathcal {S} $ - 自动序列的可识别属性。作为此方法的许多可能应用的一个示例,我们表明,只要添加是$ \ nathcal {s} $ - 可识别的,即$ \ MATHCAL {S} $的因子复杂性 - 自动序列定义了$ \ MATHCAL {S} $ - 常规序列。在本文的最后一部分中,我们研究$ \ Mathcal {s} $ - 同步序列。在此过程中,我们证明了作为同步关系和可识别序列的形成的形式系列是可以识别的。结果,$ \ MATHCAL {S} $的组成 - 同步序列和$ \ Mathcal {S} $ - 常规序列被证明为$ \ MATHCAL {S} $ - 常规。我们所有的结果均以任意尺寸$ d $和任意的半度$ \ mathbb {k} $表示。
The notion of $b$-regular sequences was generalized to abstract numeration systems by Maes and Rigo in 2002. Their definition is based on a notion of $\mathcal{S}$-kernel that extends that of $b$-kernel. However, this definition does not allow us to generalize all of the many characterizations of $b$-regular sequences. In this paper, we present an alternative definition of $\mathcal{S}$-kernel, and hence an alternative definition of $\mathcal{S}$-regular sequences, which enables us to use recognizable formal series in order to generalize most (if not all) known characterizations of $b$-regular sequences to abstract numeration systems. We then give two characterizations of $\mathcal{S}$-automatic sequences as particular $\mathcal{S}$-regular sequences. Next, we present a general method to obtain various families of $\mathcal{S}$-regular sequences by enumerating $\mathcal{S}$-recognizable properties of $\mathcal{S}$-automatic sequences. As an example of the many possible applications of this method, we show that, provided that addition is $\mathcal{S}$-recognizable, the factor complexity of an $\mathcal{S}$-automatic sequence defines an $\mathcal{S}$-regular sequence. In the last part of the paper, we study $\mathcal{S}$-synchronized sequences. Along the way, we prove that the formal series obtained as the composition of a synchronized relation and a recognizable series is recognizable. As a consequence, the composition of an $\mathcal{S}$-synchronized sequence and a $\mathcal{S}$-regular sequence is shown to be $\mathcal{S}$-regular. All our results are presented in an arbitrary dimension $d$ and for an arbitrary semiring $\mathbb{K}$.