论文标题

用内核方法对生物物理参数的一致回归

Consistent regression of biophysical parameters with kernel methods

论文作者

Díaz, Emiliano, Pérez-Suay, Adrián, Laparra, Valero, Camps-Valls, Gustau

论文摘要

本文介绍了一个新型的统计回归框架,该框架允许结合一致性约束。引入了线性和非线性(基于内核)的公式,都意味着封闭形式的分析解决方案。这些模型利用一组驱动程序的所有信息,同时最大程度地独立于一组辅助,受保护的变量。我们成功说明了叶绿素含量估计的性能。

This paper introduces a novel statistical regression framework that allows the incorporation of consistency constraints. A linear and nonlinear (kernel-based) formulation are introduced, and both imply closed-form analytical solutions. The models exploit all the information from a set of drivers while being maximally independent of a set of auxiliary, protected variables. We successfully illustrate the performance in the estimation of chlorophyll content.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源