论文标题

贝叶斯推断多晶材料

Bayesian Inference for Polycrystalline Materials

论文作者

Matuk, James, Chkrebtii, Oksana, Niezgoda, Stephen

论文摘要

多晶材料(例如金属)由异质取向的晶体组成。观察到的晶体取向是从方向分布函数(ODF)中建模为样本的,该样品决定了多种材料特性,因此对从业者引起了极大的兴趣。观察结果由四维单位向量组成,反映了单晶的方向和旋转。因此,ODF必须考虑已知的晶体对称性并满足单位长度约束。一种非参数估算ODF的流行方法是对称的内核密度估计。但是,这种方法的缺点包括难以定量解释结果以及量化ODF的不确定性。我们建议将对称Bingham分布的混合物作为灵活的参数ODF模型,推断混合物组件的数量,混合物重量以及基于晶体方向数据的比例和位置参数。此外,我们的贝叶斯方法允许对感兴趣的参数进行结构化的不确定性量化。我们讨论了采样方法的详细信息,并通过对各种取向数据集的分析,感兴趣的参数解释以及与内核密度估计方法进行比较来结束。

Polycrystalline materials, such as metals, are comprised of heterogeneously oriented crystals. Observed crystal orientations are modelled as a sample from an orientation distribution function (ODF), which determines a variety of material properties and is therefore of great interest to practitioners. Observations consist of quaternions, 4-dimensional unit vectors reflecting both orientation and rotation of a single crystal. Thus, an ODF must account for known crystal symmetries as well as satisfy the unit length constraint. A popular method for estimating ODFs non-parametrically is symmetrized kernel density estimation. However, disadvantages of this approach include difficulty in interpreting results quantitatively, as well as in quantifying uncertainty in the ODF. We propose to use a mixture of symmetric Bingham distributions as a flexible parametric ODF model, inferring the number of mixture components, the mixture weights, and scale and location parameters based on crystal orientation data. Furthermore, our Bayesian approach allows for structured uncertainty quantification of the parameters of interest. We discuss details of the sampling methodology and conclude with analyses of various orientation datasets, interpretations of parameters of interest, and comparison with kernel density estimation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源