论文标题
ODFNET:使用定向分布功能来表征3D点云
ODFNet: Using orientation distribution functions to characterize 3D point clouds
论文作者
论文摘要
学习3D点云的新表示形式是3D视觉中的一个活跃研究领域,因为订单不变的点云结构仍然对神经网络体系结构的设计构成挑战。最近的作品探索了学习全球或本地特征或两者兼而有之,但是均未通过分析点的局部方向分布来捕获上下文形状信息的早期方法。在本文中,我们利用点附近的点方向分布,以获取点云的表现力本地邻里表示。我们通过将给定点的球形邻域分为预定义的锥体来实现这一目标,并将每个体积内部的统计数据用作点特征。这样,本地贴片不仅可以由所选点的最近邻居表示,还可以考虑沿该点周围多个方向定义的点密度分布。然后,我们能够构建涉及依赖MLP(多层感知器)层的Odfblock的方向分布函数(ODF)神经网络。新的ODFNET模型可在ModelNet40和ScanObjectNN数据集上实现对象分类的最新精度,并在Shapenet S3DIS数据集中进行分割。
Learning new representations of 3D point clouds is an active research area in 3D vision, as the order-invariant point cloud structure still presents challenges to the design of neural network architectures. Recent works explored learning either global or local features or both for point clouds, however none of the earlier methods focused on capturing contextual shape information by analysing local orientation distribution of points. In this paper, we leverage on point orientation distributions around a point in order to obtain an expressive local neighborhood representation for point clouds. We achieve this by dividing the spherical neighborhood of a given point into predefined cone volumes, and statistics inside each volume are used as point features. In this way, a local patch can be represented by not only the selected point's nearest neighbors, but also considering a point density distribution defined along multiple orientations around the point. We are then able to construct an orientation distribution function (ODF) neural network that involves an ODFBlock which relies on mlp (multi-layer perceptron) layers. The new ODFNet model achieves state-of the-art accuracy for object classification on ModelNet40 and ScanObjectNN datasets, and segmentation on ShapeNet S3DIS datasets.