论文标题

明智的可变性,周期性和接触二进制

Variability, periodicity and contact binaries in WISE

论文作者

Petrosky, Evan, Hwang, Hsiang-Chih, Zakamska, Nadia L., Chandra, Vedant, Hill, Matthew J.

论文摘要

Wise的时间序列组成部分是研究可变对象的宝贵资源。我们介绍了〜450,000个差异+NeoWise红外光曲线的全天空样本的分析,该样本的可能变量可能会在同时识别出的可能变量。通过计算所有这些来源的周期图,我们确定了约56,000个周期变量。其中约42,000个是短周期(p <1天),接近接触或接触到黯然失色的二进制文件,其中许多是在主序列上。我们使用周期性和大约变量来测试周期性变量分类和识别的计算廉价方法,利用了通量的概率分布函数和可变性时间标准的各种度量。我们期刊期刊和非参数分析的可变性度量与明智和绝对幅度,GAIA的颜色和可变性幅度的红外颜色的组合对于周期性变量的识别和分类很有用。此外,我们表明,非参数方法在确定周期性变量方面的有效性与期刊图的有效性相当,但计算成本要低得多。未来的调查可以利用这些方法来加速更传统的时间序列分析,并确定基于周期图的选择所遗漏的不断发展的来源。

The time-series component of WISE is a valuable resource for the study of variable objects. We present an analysis of an all-sky sample of ~450,000 AllWISE+NEOWISE infrared light curves of likely variables identified in AllWISE. By computing periodograms of all these sources, we identify ~56,000 periodic variables. Of these, ~42,000 are short-period (P<1 day), near-contact or contact eclipsing binaries, many of which are on the main sequence. We use the periodic and aperiodic variables to test computationally inexpensive methods of periodic variable classification and identification, utilizing various measures of the probability distribution function of fluxes and of timescales of variability. The combination of variability measures from our periodogram and non-parametric analyses with infrared colors from WISE and absolute magnitudes, colors and variability amplitude from Gaia is useful for the identification and classification of periodic variables. Furthermore, we show that the effectiveness of non-parametric methods for the identification of periodic variables is comparable to that of the periodogram but at a much lower computational cost. Future surveys can utilize these methods to accelerate more traditional time-series analyses and to identify evolving sources missed by periodogram-based selections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源