论文标题

超声非破坏性测量的频率子采样:采集,重建和性能

Frequency Sub-Sampling of Ultrasound Non-Destructive Measurements: Acquisition, Reconstruction and Performance

论文作者

Kirchhof, Jan, Semper, Sebastian, Wagner, Christoph W., Pérez, Eduardo, Römer, Florian, Del Galdo, Giovanni

论文摘要

在超声无损测试中,一种广泛的方法是从样品表面进行合成孔径测量,以检测并定位其内部缺陷。基于这些测量值,通常使用合成孔径聚焦技术(SAFT)进行成像。但是,SAFT在分辨率方面是最佳的,需要在时域进行过度采样以获得延迟和延迟(DAS)的细网格。另一方面,参数重建算法可提供更好的分辨率,但是由于参数空间的大小以及在现实的3-D场景中,由于参数空间的大小以及大量的测量数据,它们的成像使用量变得昂贵。在文献中,对此的补救措施是双重的:首先,可以使用TAR TARS sub-Nyquist采样方法来减少测量数据的量,以测量傅立叶系数而不是时域样本。其次,参数重建算法主要依赖于矩阵向量操作,这些操作可以通过利用基础模型结构来有效地实现。在本文中,我们提出并比较不同的策略,以选择要测量的傅立叶系数。通过数值评估Cramér-Rao结合缺陷坐标性的渐近性能,可以比较它们的渐近性能。然后将这些子采样策略与$ \ ell_1 $毫米化方案结合使用,以从低速率测量值中计算3-D重建。与传统的DAS相比,这使我们能够制定一个完全有理由动机的前进模型。为了实现这一目标,通过利用基础2级Toeplitz结构来实现前向模型矩阵的投影操作。最后,我们表明,基于模拟数据以及测量值,每次扫描的高分辨率重建可能是可以每次扫描的单个傅立叶系数。

In ultrasound nondestructive testing, a widespread approach is to take synthetic aperture measurements from the surface of a specimen to detect and locate defects within it. Based on these measurements, imaging is usually performed using the Synthetic Aperture Focusing Technique (SAFT). However, SAFT is sub-optimal in terms of resolution and requires oversampling in time domain to obtain a fine grid for the Delay-and-Sum (DAS). On the other hand, parametric reconstruction algorithms give better resolution, but their usage for imaging becomes computationally expensive due to the size of the parameter space and the large amount of measurement data in realistic 3-D scenarios. In the literature, the remedies to this are twofold: First, the amount of measurement data can be reduced using state of the art sub-Nyquist sampling approaches to measure Fourier coefficients instead of time domain samples. Second, parametric reconstruction algorithms mostly rely on matrix-vector operations that can be implemented efficiently by exploiting the underlying model structure. In this paper, we propose and compare different strategies to choose the Fourier coefficients to be measured. Their asymptotic performance is compared by numerically evaluating the Cramér-Rao-Bound for the localizability of the defect coordinates. These subsampling strategies are then combined with an $\ell_1$-minimization scheme to compute 3-D reconstructions from the low-rate measurements. Compared to conventional DAS, this allows us to formulate a fully physically motivated forward model. To enable this, the projection operations of the forward model matrix are implemented matrix-free by exploiting the underlying 2-level Toeplitz structure. Finally, we show that high resolution reconstructions from as low as a single Fourier coefficient per scan are possible based on simulated data as well as on measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源