论文标题

量化变压器空间中的提取意见摘要

Extractive Opinion Summarization in Quantized Transformer Spaces

论文作者

Angelidis, Stefanos, Amplayo, Reinald Kim, Suhara, Yoshihiko, Wang, Xiaolan, Lapata, Mirella

论文摘要

我们介绍了量化的变压器(QT),这是一种无监督的提取意见摘要的系统。 QT的灵感来自矢量量化的变分自动编码器,我们将其重新利用以供普通驱动的摘要。它使用对量化空间的聚类解释和一种新颖的提取算法来发现数百个评论中的流行观点,这是朝着实际范围摘要迈出的重要一步。此外,QT通过利用量化空间的特性来提取特定于方面的摘要,可以在没有进一步培训的情况下进行可控的摘要。我们还提供了公开可用的空间,这是意见摘要的大规模评估基准,包括50家酒店的一般和特定于方面的摘要。实验证明了我们的方法的希望,该方法得到了人类研究的验证,在该研究中,法官表现出对我们方法而不是竞争基准的偏爱。

We present the Quantized Transformer (QT), an unsupervised system for extractive opinion summarization. QT is inspired by Vector-Quantized Variational Autoencoders, which we repurpose for popularity-driven summarization. It uses a clustering interpretation of the quantized space and a novel extraction algorithm to discover popular opinions among hundreds of reviews, a significant step towards opinion summarization of practical scope. In addition, QT enables controllable summarization without further training, by utilizing properties of the quantized space to extract aspect-specific summaries. We also make publicly available SPACE, a large-scale evaluation benchmark for opinion summarizers, comprising general and aspect-specific summaries for 50 hotels. Experiments demonstrate the promise of our approach, which is validated by human studies where judges showed clear preference for our method over competitive baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源