论文标题

解决交通拥堵游戏中纳什均衡的复杂性

Settling the complexity of Nash equilibrium in congestion games

论文作者

Babichenko, Yakov, Rubinstein, Aviad

论文摘要

我们考虑(i)在拥塞游戏中找到(可能混合的)NASH平衡的问题,以及(ii)找到平滑函数的梯度下降动力学的(指数精度)固定点的问题。我们证明这些问题是等效的。我们的结果适用于$ f $的各种明确描述,范围从(几乎一般)算术电路到$ 5 $多项式。到[Fearnley,Goldberg,Hollender,Savani '20]的最新结果,这意味着这些问题是PPAD $ \ cap $ pls complete。作为推论,我们还获得了以下复杂性类别的等效性:ccls = ppad $ \ cap $ pls。

We consider (i) the problem of finding a (possibly mixed) Nash equilibrium in congestion games, and (ii) the problem of finding an (exponential precision) fixed point of the gradient descent dynamics of a smooth function $f:[0,1]^n \rightarrow \mathbb{R}$. We prove that these problems are equivalent. Our result holds for various explicit descriptions of $f$, ranging from (almost general) arithmetic circuits, to degree-$5$ polynomials. By a very recent result of [Fearnley, Goldberg, Hollender, Savani '20] this implies that these problems are PPAD$\cap$PLS-complete. As a corollary, we also obtain the following equivalence of complexity classes: CCLS = PPAD$\cap$PLS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源