论文标题

质地转化了关注现实图像插入的关注

Texture Transform Attention for Realistic Image Inpainting

论文作者

Kim, Yejin, Cheon, Manri, Lee, Junwoo

论文摘要

在过去的几年中,通过使用深层神经网络,填充缺失区域的填充性能显示出显着改善。大多数钻头工作都会创造出视觉上合理的结构和纹理,但是,由于它们经常产生模糊的结果,因此最终结果似乎是不现实的,并使其感到异质性。为了解决此问题,现有方法使用了具有深神经网络的基于补丁的解决方案,但是,这些方法也无法正确传输纹理。在这些观察过程中,我们提出了一种基于补丁的方法。纹理转换注意力网络(TTA-NET),可以更好地产生缺失的区域,并提供细节。该任务是一个单个改进网络,并采用U-NET体系结构的形式,它通过跳过连接将编码器的精细纹理特征转移到解码器的粗语义特征。纹理转换的注意力用于使用精细纹理和粗略的语义创建新的重新组装纹理图,从而有效传输纹理信息。为了稳定训练过程,我们使用了地面真相和贴片歧视器的VGG特征层。我们使用可公开的数据集Celeba-HQ和Place2评估了我们的模型,并证明可以为现有的最新方法获得更高质量的图像。

Over the last few years, the performance of inpainting to fill missing regions has shown significant improvements by using deep neural networks. Most of inpainting work create a visually plausible structure and texture, however, due to them often generating a blurry result, final outcomes appear unrealistic and make feel heterogeneity. In order to solve this problem, the existing methods have used a patch based solution with deep neural network, however, these methods also cannot transfer the texture properly. Motivated by these observation, we propose a patch based method. Texture Transform Attention network(TTA-Net) that better produces the missing region inpainting with fine details. The task is a single refinement network and takes the form of U-Net architecture that transfers fine texture features of encoder to coarse semantic features of decoder through skip-connection. Texture Transform Attention is used to create a new reassembled texture map using fine textures and coarse semantics that can efficiently transfer texture information as a result. To stabilize training process, we use a VGG feature layer of ground truth and patch discriminator. We evaluate our model end-to-end with the publicly available datasets CelebA-HQ and Places2 and demonstrate that images of higher quality can be obtained to the existing state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源