论文标题
通过一个片段修饰进行分子优化的深层生成模型
A Deep Generative Model for Molecule Optimization via One Fragment Modification
论文作者
论文摘要
分子优化是药物开发的关键步骤,以通过化学修饰来改善候选药物的所需特性。我们开发了一种新型的深层生成模型模型,超过了分子图,以优化分子。 MODOF通过预测分子上的单个断开位点的预测以及在该位点的去除和/或添加片段来修改给定的分子。多个相同的MODOF模型的管道将在Modof-Pipe中实现,以在多个断开位点修改输入分子。在这里,我们表明Modof-Pipe能够保留主要的分子支架,可以控制中间优化步骤,并更好地限制分子相似性。 MODOF-PIPE优于基准数据集上的最新方法:没有分子相似性约束,ModOf-Pipe可在辛烷值 - 水分分区系数中提高81.2%,并通过合成可及性和环大小而受到惩罚;如果优化分子分别在优化之前分别类似于0.2、0.4和0.6,则51.2%,25.6%和9.2%的改善。 Modof-Pipe将进一步增强到Modof-Pipem中,以使一个分子修改为多个优化的分子。 MODOF-PIPEM可取得额外的性能提高,至少比Modof-Pipe好17.8%。
Molecule optimization is a critical step in drug development to improve desired properties of drug candidates through chemical modification. We developed a novel deep generative model Modof over molecular graphs for molecule optimization. Modof modifies a given molecule through the prediction of a single site of disconnection at the molecule and the removal and/or addition of fragments at that site. A pipeline of multiple, identical Modof models is implemented into Modof-pipe to modify an input molecule at multiple disconnection sites. Here we show that Modof-pipe is able to retain major molecular scaffolds, allow controls over intermediate optimization steps and better constrain molecule similarities. Modof-pipe outperforms the state-of-the-art methods on benchmark datasets: without molecular similarity constraints, Modof-pipe achieves 81.2% improvement in octanol-water partition coefficient penalized by synthetic accessibility and ring size; and 51.2%, 25.6% and 9.2% improvement if the optimized molecules are at least 0.2, 0.4 and 0.6 similar to those before optimization, respectively. Modof-pipe is further enhanced into Modof-pipem to allow modifying one molecule to multiple optimized ones. Modof-pipem achieves additional performance improvement as at least 17.8% better than Modof-pipe.