论文标题

量子电路设计搜索

Quantum Circuit Design Search

论文作者

Pirhooshyaran, Mohammad, Terlaky, Tamas

论文摘要

本文探讨了针对参数化量子电路设计的搜索策略。我们提出了几种优化方法,包括随机搜索以及优胜灵的存活,通过经典和混合量子量子的经典控制器和贝叶斯优化作为决策者,以自动化方式设计量子电路,以实现特定任务,例如在数据集上使用多标签分类,以设计量子电路。我们引入了非平凡的电路体系结构,这些架构在训练性方面很难手动设计和有效。此外,我们将初始数据的重载介绍为量子电路,以此作为找到更多一般设计的选项。我们从数值上表明,与文献中已建立的参数化量子电路设计相比,IRIS数据集的一些建议的架构可以取得更好的结果。此外,我们研究了看不见的数据集玻璃上这些结构的训练性。我们报告了与基准分类相比玻璃数据集的有意义的优势,这支持了建议的设计本质上更可训练。

This article explores search strategies for the design of parameterized quantum circuits. We propose several optimization approaches including random search plus survival of the fittest, reinforcement learning both with classical and hybrid quantum classical controllers and Bayesian optimization as decision makers to design a quantum circuit in an automated way for a specific task such as multi-labeled classification over a dataset. We introduce nontrivial circuit architectures that are arduous to be hand-designed and efficient in terms of trainability. In addition, we introduce reuploading of initial data into quantum circuits as an option to find more general designs. We numerically show that some of the suggested architectures for the Iris dataset accomplish better results compared to the established parameterized quantum circuit designs in the literature. In addition, we investigate the trainability of these structures on the unseen dataset Glass. We report meaningful advantages over the benchmarks for the classification of the Glass dataset which supports the fact that the suggested designs are inherently more trainable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源