论文标题
孤子和kadomtsev-petviashvili方程中的平均流之间的斜相互作用
Oblique interactions between solitons and mean flows in the Kadomtsev-Petviashvili equation
论文作者
论文摘要
使用kadomtsev-petviaShvili II(KPII)方程分析斜线孤子与一维动态平均流的相互作用。基于先前研究的研究,该研究通过缓慢变化的稀疏或振荡性分散性冲击波在一个空间和一个时间维度中的传播或捕获,本文允许事件孤子在非零斜角以变化的平均流量接近变化的平均流动。通过得出不变数量的数量,唯一均值流量调制方程$ - $ $一个由三个(1+1)的系统组成的系统 - 孤子和平均流程参数$ - $ - $ - $ - $ - 并将初始配置作为riemann问题在调制变量中的riemann问题上提出均值量化量的均值差异。发现倾斜的孤子和平均流量变化之间的相互作用导致在(1+1)维还原问题中未观察到的几个新型特征。这些有趣的动力学中的许多是源于非收缩双曲线的独特结构,其中包括一个定义明确的多价溶液,该解决方案解释为(2+1)二维单词均值调制方程的解决方案,其中孤子与平均流量相互作用,然后再与它相互作用以再次与之相互作用。最后,结果表明,对于平均流量,孤子和分散冲击波解之间的斜相互作用会引起KPII方程的所有三种可能的2-索顿溶液。分析结果由直接数值模拟定量支持。
The interaction of an oblique line soliton with a one-dimensional dynamic mean flow is analyzed using the Kadomtsev-Petviashvili II (KPII) equation. Building upon previous studies that examined the transmission or trapping of a soliton by a slowly varying rarefaction or oscillatory dispersive shock wave in one space and one time dimension, this paper allows for the incident soliton to approach the changing mean flow at a nonzero oblique angle. By deriving invariant quantities of the soliton-mean flow modulation equations$-$a system of three (1+1)-dimensional quasilinear, hyperbolic equations for the soliton and mean flow parameters$-$and positing the initial configuration as a Riemann problem in the modulation variables, it is possible to derive quantitative predictions regarding the evolution of the line soliton within the mean flow. It is found that the interaction between an oblique soliton and a changing mean flow leads to several novel features not observed in the (1+1)-dimensional reduced problem. Many of these interesting dynamics arise from the unique structure of the modulation equations that are nonstrictly hyperbolic, including a well-defined multivalued solution interpreted as a solution of the (2+1)-dimensional soliton-mean modulation equations, in which the soliton interacts with the mean flow and then wraps around to interact with it again. Finally, it is shown that the oblique interactions between solitons and dispersive shock wave solutions for the mean flow give rise to all three possible types of 2-soliton solutions of the KPII equation. The analytical findings are quantitatively supported by direct numerical simulations.