论文标题
低维重力的保护和可集成性
Conservation and Integrability in Lower-Dimensional Gravity
论文作者
论文摘要
我们解决了无穷大的两个和三维重力理论中指控的保护和整合性问题。该分析是在一个框架中进行的,该框架使我们能够同时在局部广告和渐近局部平坦的空间上进行渐近的处理。在两个维度中,我们从包括JT和CGHS DILATON重力理论的一般模型开始,而在三个维度上,我们在爱因斯坦重力中工作。在这两种情况下,我们都通过全息重新归一化程序构建相空间并重新归一化在符号结构中产生的分歧。我们表明,电荷表达式是一般有限的,不是保守的,但可以通过渐近对称参数的场依赖性重新定义来整合。
We address the questions of conservation and integrability of the charges in two and three-dimensional gravity theories at infinity. The analysis is performed in a framework that allows us to treat simultaneously asymptotically locally AdS and asymptotically locally flat spacetimes. In two dimensions, we start from a general class of models that includes JT and CGHS dilaton gravity theories, while in three dimensions, we work in Einstein gravity. In both cases, we construct the phase space and renormalize the divergences arising in the symplectic structure through a holographic renormalization procedure. We show that the charge expressions are generically finite, not conserved but can be made integrable by a field-dependent redefinition of the asymptotic symmetry parameters.