论文标题
抗块的2D rydberg原子阵列中的本地化和关键性
Localization and criticality in antiblockaded 2D Rydberg atom arrays
论文作者
论文摘要
可控的rydberg原子阵列为量子物质的基本特性提供了新的见解,无论是在平衡中还是在平衡中。在这项工作中,我们研究了在抗块(促进)条件下,在2D方格中被困在2D方格中的Rydberg原子的作用。我们表明,促进条件导致整个希尔伯特空间的特定子空间的连接图,形成了一个2D Lieb晶格,该晶格具有单一的平坦带。值得注意的是,随着疾病强度的变化,我们发现了三个不同的政权:一个关键的制度,一种离域但非癌化的制度以及具有无序诱导的平坦带的制度。临界策略的存在至关重要地取决于我们模型中的单一平坦带,并且在任何一维阵列或梯子系统中都不存在。我们建议使用淬灭动力学来实验探测三种不同的制度。
Controllable Rydberg atom arrays have provided new insights into fundamental properties of quantum matter both in and out of equilibrium. In this work, we study the effect of experimentally relevant positional disorder on Rydberg atoms trapped in a 2D square lattice under anti-blockade (facilitation) conditions. We show that the facilitation conditions lead the connectivity graph of a particular subspace of the full Hilbert space to form a 2D Lieb lattice, which features a singular flat band. Remarkably, we find three distinct regimes as the disorder strength is varied: a critical regime, a delocalized but nonergodic regime, and a regime with a disorder-induced flat band. The critical regime's existence depends crucially upon the singular flat band in our model, and is absent in any 1D array or ladder system. We propose to use quench dynamics to probe the three different regimes experimentally.