论文标题

学习使用持续分数来推断:预测超导体材料的临界温度

Learning to extrapolate using continued fractions: Predicting the critical temperature of superconductor materials

论文作者

Moscato, Pablo, Haque, Mohammad Nazmul, Huang, Kevin, Sloan, Julia, de Oliveira, Jon C.

论文摘要

在人工智能(AI)和机器学习(ML)的领域中,未知目标功能的近似值$ y = f(\ MathBf {x})$使用有限实例$ s = {(\ MathBf {x x^{(i)}} $ d $代表着感兴趣的领域,是一个普遍的目标。我们将$ s $称为培训集,旨在确定一个低复杂性数学模型,该模型可以有效地近似于新实例$ \ mathbf {x} $的目标功能。因此,在单独的集合上评估了模型的概括能力$ t = \ {\ mathbf {x^{(J)}}} \} \ subset d $,其中$ t \ neq s $,通常使用$ t \ cap s = \ emptyset $,以评估其训练集以外的绩效。但是,某些应用程序不仅需要在原始域$ d $中进行准确的近似,还需要在包含$ d $的扩展域中$ d'$中。这在涉及新结构的设计的情况下变得尤其重要,在近似值中最小化错误至关重要。例如,当通过数据驱动的方法开发新材料时,AI/ML系统可以提供有价值的见解来通过作为替代功能来指导设计过程。因此,可以使用学习的模型来促进新实验室实验的设计。在本文中,我们提出了一种基于持续分数的迭代拟合的多元回归方法,并结合了添加剂模型。我们将方法的性能与既定技术进行比较,包括Adaboost,内核脊,线性回归,Lasso Lars,线性支持矢量回归,多层感知器,随机森林,随机梯度,随机梯度下降和XGBoost。为了评估这些方法,我们关注该领域的一个重要问题:基于物理化学特征预测超导体的临界温度。

In the field of Artificial Intelligence (AI) and Machine Learning (ML), the approximation of unknown target functions $y=f(\mathbf{x})$ using limited instances $S={(\mathbf{x^{(i)}},y^{(i)})}$, where $\mathbf{x^{(i)}} \in D$ and $D$ represents the domain of interest, is a common objective. We refer to $S$ as the training set and aim to identify a low-complexity mathematical model that can effectively approximate this target function for new instances $\mathbf{x}$. Consequently, the model's generalization ability is evaluated on a separate set $T=\{\mathbf{x^{(j)}}\} \subset D$, where $T \neq S$, frequently with $T \cap S = \emptyset$, to assess its performance beyond the training set. However, certain applications require accurate approximation not only within the original domain $D$ but also in an extended domain $D'$ that encompasses $D$. This becomes particularly relevant in scenarios involving the design of new structures, where minimizing errors in approximations is crucial. For example, when developing new materials through data-driven approaches, the AI/ML system can provide valuable insights to guide the design process by serving as a surrogate function. Consequently, the learned model can be employed to facilitate the design of new laboratory experiments. In this paper, we propose a method for multivariate regression based on iterative fitting of a continued fraction, incorporating additive spline models. We compare the performance of our method with established techniques, including AdaBoost, Kernel Ridge, Linear Regression, Lasso Lars, Linear Support Vector Regression, Multi-Layer Perceptrons, Random Forests, Stochastic Gradient Descent, and XGBoost. To evaluate these methods, we focus on an important problem in the field: predicting the critical temperature of superconductors based on physical-chemical characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源