论文标题
量子计算机上的语法意识句子分类
Grammar-aware sentence classification on quantum computers
论文作者
论文摘要
自然语言处理(NLP)是当代AI进步的最前沿,它可以说是该领域最具挑战性的领域之一。同时,在量子计算领域(QC),随着量子硬件的稳定增长,并显着改进了量子算法的实施,我们正在接近一个ERA,当时量子计算机执行无法在具有合理资源的经典计算机上执行的任务。这为AI和NLP提供了新的机会。在这项工作中,我们使用自然语言含义的分类分布组成(DiscoCat)模型,其潜在的数学基础使其可以适合量子实例化。早期在易耐断层量子算法上的工作已经证明了NLP的潜在量子优势,尤其是采用了盘子。在这项工作中,我们专注于嘈杂的中间尺度量子(NISQ)硬件的功能,并使用DiscoCat Framework在NISQ处理器上执行NLP任务的首次实现。句子被实例化为参数化的量子电路;单词means词使用参数化的量子循环嵌入量子状态,句子的语法结构忠实地表现为纠缠操作的模式,将单词电路构成句子电路。在监督的NLP二进制分类任务中,使用经典优化器对电路的参数进行了训练。我们的新型QNLP模型显示了可扩展性的具体希望,因为量子硬件的质量在不久的将来有所改善,并巩固了QC和AI交集的实验研究的新颖分支。
Natural language processing (NLP) is at the forefront of great advances in contemporary AI, and it is arguably one of the most challenging areas of the field. At the same time, in the area of Quantum Computing (QC), with the steady growth of quantum hardware and notable improvements towards implementations of quantum algorithms, we are approaching an era when quantum computers perform tasks that cannot be done on classical computers with a reasonable amount of resources. This provides a new range of opportunities for AI, and for NLP specifically. In this work, we work with the Categorical Distributional Compositional (DisCoCat) model of natural language meaning, whose underlying mathematical underpinnings make it amenable to quantum instantiations. Earlier work on fault-tolerant quantum algorithms has already demonstrated potential quantum advantage for NLP, notably employing DisCoCat. In this work, we focus on the capabilities of noisy intermediate-scale quantum (NISQ) hardware and perform the first implementation of an NLP task on a NISQ processor, using the DisCoCat framework. Sentences are instantiated as parameterised quantum circuits; word-meanings are embedded in quantum states using parameterised quantum-circuits and the sentence's grammatical structure faithfully manifests as a pattern of entangling operations which compose the word-circuits into a sentence-circuit. The circuits' parameters are trained using a classical optimiser in a supervised NLP task of binary classification. Our novel QNLP model shows concrete promise for scalability as the quality of the quantum hardware improves in the near future and solidifies a novel branch of experimental research at the intersection of QC and AI.