论文标题

调光:通过加强学习的自适应网络范围

Dimmer: Self-Adaptive Network-Wide Flooding with Reinforcement Learning

论文作者

Poirot, Valentin, Landsiedel, Olaf

论文摘要

在过去的十年中,同步传输(ST)的出现是低功率无线网络中有效的通信范式。许多ST协议在正常无线条件下提供了高度的可靠性和能源效率,以满足各种交通要求。最近,随着EWSN的可靠性竞争,社区将ST推向了更严格且高度干扰的环境,通过使用自定义规则,手持式参数和其他重新递送来改善经典的ST协议。结果是复杂的协议,需要先前的专家知识和广泛的测试,通常会针对特定的部署和设想的方案进行调整。在本文中,我们探讨了ST协议如何从自适应中受益;自适应ST协议为(1)处理外部环境动力学的最佳参数,并且(2)随着时间的推移适应其拓扑。我们将DIMMER作为自适应ST协议介绍。 DIMMER建立在LWB上,并使用增强学习来调整其参数并匹配无线介质的当前属性。通过学习如何从未标记的数据集中表现出来,调光器适应了不同的干扰类型和模式,并能够应对以前看不见的干扰。借助Dimmer,我们探讨了如何有效地设计基于AI的设备的系统,并概述了基于AI的低功率网络的好处和衰落。我们评估了我们的协议,该协议是针对强大,未知的WiFi干扰的两个部署资源受限的节点的可靠性。我们的结果优于非自适应ST协议(27%)和PID控制器等基线,并显示出接近手工制作和更复杂的解决方案(例如Crystal(99%))的性能。

The last decade saw an emergence of Synchronous Transmissions (ST) as an effective communication paradigm in low-power wireless networks. Numerous ST protocols provide high reliability and energy efficiency in normal wireless conditions, for a large variety of traffic requirements. Recently, with the EWSN dependability competitions, the community pushed ST to harsher and highly-interfered environments, improving upon classical ST protocols through the use of custom rules, hand-tailored parameters, and additional retransmissions. The results are sophisticated protocols, that require prior expert knowledge and extensive testing, often tuned for a specific deployment and envisioned scenario. In this paper, we explore how ST protocols can benefit from self-adaptivity; a self-adaptive ST protocol selects itself its best parameters to (1) tackle external environment dynamics and (2) adapt to its topology over time. We introduce Dimmer as a self-adaptive ST protocol. Dimmer builds on LWB and uses Reinforcement Learning to tune its parameters and match the current properties of the wireless medium. By learning how to behave from an unlabeled dataset, Dimmer adapts to different interference types and patterns, and is able to tackle previously unseen interference. With Dimmer, we explore how to efficiently design AI-based systems for constrained devices, and outline the benefits and downfalls of AI-based low-power networking. We evaluate our protocol on two deployments of resource-constrained nodes achieving 95.8% reliability against strong, unknown WiFi interference. Our results outperform baselines such as non-adaptive ST protocols (27%) and PID controllers, and show a performance close to hand-crafted and more sophisticated solutions, such as Crystal (99%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源