论文标题
夸克的dyson-schwinger方程的快速数值解决方案,带有球chiu顶点
A Fast Numerical solution of the quark's Dyson-Schwinger equation with Ball-Chiu vertex
论文作者
论文摘要
在本文中,我们提出了两种可行且有效的方法,用于在数值上求解夸克的dyson-schwinger(QDSE),QDSE是具有高度自由度的第二种非线性积分方程的数学系统。由于其非线性和奇异性,很难在分析上解决QDSE。通常,我们通过高斯Legendre积分集成公式分离奇异积分方程,然后通过迭代方法获得积分方程的近似解。进度的主要困难是未知功能,它是夸克在真空的传播器,在有限的化学电位上发生在整体符号内外。由于奇异性,积分符号内的未知函数需要以高精度插值。通常,传统的数值示例表明,插值将花费大量CPU时间。在这种情况下,我们提供了两种有效而有效的方法来优化数值计算,一个是提出一种修改的插值方法来替换传统方法。此外,GCC中的OpenMP和自动并行化技术是另一种已在现代科学计算中广泛使用的方法。最后,我们将CPU时间与不同的算法进行比较,我们的数值结果显示了所提出方法的效率。
In this paper, we present two feasible and efficient methods to numerically solve the quark's Dyson-Schwinger (qDSE), the qDSE is mathematical systems of nonlinear integral equations of the second kind with high degrees of freedom. It is difficult to analytically solve the qDSE due to its non-linearity and the singularity. Normally we discrete the singular integral equation by Gauss Legendre integral integration formula, then the approximate solutions of integral equation are obtained by iterative method. The main difficulty in the progress is the unknown function, which is the quark's propagator at vacuum and at finite chemical potential, occurs inside and outside the integral sign. Because of the singularity, the unknown function inside the integral sign need to be interpolate with high precision. Normally traditional numerical examples show the interpolation will cost a lot of CPU time. In this case, we provide two effective and efficient methods to optimize the numerical calculation, one is we put forward a modified interpolation method to replace the traditional method. Besides, the technique of OpenMP and automatic parallelization in GCC is another method which has widely used in modern scientific computation. Finally, we compare CPU time with different algorithm and our numerical results show the efficiency of the proposed methods.