论文标题

在速率限制下,多币电源控制深度学习

Multicell Power Control under Rate Constraints with Deep Learning

论文作者

Li, Yinghan, Han, Shengqian, Yang, Chenyang

论文摘要

在本文中,我们研究了一种基于深度学习的方法,用于解决总和速率最大化的多电池功率控制问题,但要受到每个用户速率约束和每个基本站(BS)功率约束。这个问题的核心难度是如何确保深度神经网络(DNN)导致学习的功率控制能够满足每个用户速率约束。为了解决困难,我们建议在传统的DNN之后级联一个投影块,该DNN将不可行的功率控制结果投射到约束集中。投影块是基于对约束的几何解释而设计的,该约束的复杂性低,满足了在线应用程序的实时需求。反向传播梯度的显式表达是针对所提出的投影块得出的,可以通过无监督的学习来训练DNN,以直接最大化总和率。我们还开发了投影块的启发式实施,以减少DNN的大小。仿真结果证明了所提出的方法比现有的深度学习和数值优化方法的优势,并显示了所提出的方法的稳健性,并在训练和测试〜数据集之间的模型不匹配。

In the paper we study a deep learning based method to solve the multicell power control problem for sum rate maximization subject to per-user rate constraints and per-base station (BS) power constraints. The core difficulty of this problem is how to ensure that the learned power control results by the deep neural network (DNN) satisfy the per-user rate constraints. To tackle the difficulty, we propose to cascade a projection block after a traditional DNN, which projects the infeasible power control results onto the constraint set. The projection block is designed based on a geometrical interpretation of the constraints, which is of low complexity, meeting the real-time requirement of online applications. Explicit-form expression of the backpropagated gradient is derived for the proposed projection block, with which the DNN can be trained to directly maximize the sum rate via unsupervised learning. We also develop a heuristic implementation of the projection block to reduce the size of DNN. Simulation results demonstrate the advantages of the proposed method over existing deep learning and numerical optimization~methods, and show the robustness of the proposed method with the model mismatch between training and testing~datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源