论文标题
分析叶子的载体和等效性
Holonomy and equivalence of analytic foliations
论文作者
论文摘要
本文的主要目的是通过$ x \ partial_x+\ sum_ = 1}^{i = 1}^{n} a_i(x,x,\ mathbf {z} = p partial________________________________________________________________________________________________________________________________________________________________________________________________________________的$ a_i(x,\ mathbf {z})$是分析功能的细菌,其$ a_i(x,0)= 0 $。我们专注于与与之相关的圣灵的联系的联系。在一些假设下,我们证明,一旦将它们沿给定的分离质的局部全体性分析后,分析了这些奇异叶子的细菌就会进行分析。
The main goal of this paper is the analytic classification of the germs of singular foliations generated, up to an analytic change of coordinates, by the germs of vector fields of form the $x\partial_x+\sum_{i=1}^{n}a_i(x,\mathbf{z})\partial_{z_i}$, where $a_i(x,\mathbf{z})$ is a germ of analytic function with $a_i(x,0)=0$. We focus on the connection with the conjugation of the holonomies related to them. We prove, under some hypothesis, that these germs of singular foliations are analytically classified once their local holonomy along a given separatrix are analytically conjugated.