论文标题

无序固体中介镜机械障碍的变异性

Variability of mesoscopic mechanical disorder in disordered solids

论文作者

González-López, Karina, Bouchbinder, Eran, Lerner, Edan

论文摘要

量化固体(无序晶体或玻璃固体)中的机械障碍以及理解其可变性范围至关重要,例如发现结构范围关系。无序固体中机械波动程度以及如何依赖固体形成历史的界限仍然未知。在这里,我们研究了通过剪切模量的无量纲波动定义的介质机械障碍$χ$的广泛适用的量词,这些量子在多种无序的计算机固体和不同的控制参数上定义。 $χ$与无序固体的基本特性(例如弹性常数和塑性可变形性)密切相关,可以通过波分解测量来实验提取。我们发现,各种各样的自组织玻璃固体,疾病是一种新兴的特性,似乎满足了$χ$的通用下限。另一方面,我们表明$χ$与上方无限,并且可能在系统向关键的无障碍点驱动。这些结果凸显了无序固体的基本特性,并为在不同系统上系统地量化机械障碍的基础为基础。

Quantifying mechanical disorder in solids, either disordered crystals or glassy solids, and understanding its range of variability are of prime importance, e.g.~for discovering structure-properties relations. The bounds on the degree of mechanical fluctuations in disordered solids and how those depend on solids formation history remain unknown. Here, we study a broadly applicable quantifier of mesoscopic mechanical disorder $χ$, defined via the dimensionless fluctuations of the shear modulus, over a wide variety of disordered computer solids and upon varying different control parameters. $χ$ is intimately related to basic properties of disordered solids, such as elastic constants and plastic deformability, and can be experimentally extracted by wave-attenuation measurements. We find that a large variety of self-organized glassy solids, where disorder is an emergent property, appear to satisfy a generic lower bound on $χ$. On the other hand, we show that $χ$ is unbounded from above, and may diverge in systems driven towards the critical unjamming point. These results highlight basic properties of disordered solids and set the ground for systematically quantifying mechanical disorder across different systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源