论文标题
宇宙中原始物理学的拓扑回声大尺度
Topological Echoes of Primordial Physics in the Universe at Large Scales
论文作者
论文摘要
我们提出了通过持续的同源性来表征和约束宇宙学中初始条件的管道。可观察到的宇宙学是大规模结构的宇宙网络,所讨论的初始条件是原始密度扰动的非高斯(NG)。我们计算持久性图和衍生统计数据,用于使用高斯和非高斯初始条件模拟暗物质光环。出于计算原因并与实验观测接触,我们的管道计算在完整模拟和模拟的子箱中的持久性被亚采样为均匀的光环数。我们将模拟使用大型NG($ f _ {\ rm nl}^{\ rm loc} = 250 $)作为模板,用于识别使用温和ng的数据($ f _ {\ rm nl}^{\ rm nl}^{\ rm loc} = 10 $),并运行几盘尺寸的尺寸的尺寸尺寸的管道。 $ 40〜(\ textrm {gpc/h})^{3} $,我们检测到$ f _ {\ rm nl}^{\ rm loc} = 10 $ at $ 97.5 \%$ $ \%$ $ \%$ $ \ sim 85 \%$的信心是我们最好的单个统计量。在整个过程中,我们受益于拓扑特征作为统计推断的输入的解释性,这使我们能够与以前的第一原理计算接触并做出新的预测。
We present a pipeline for characterizing and constraining initial conditions in cosmology via persistent homology. The cosmological observable of interest is the cosmic web of large scale structure, and the initial conditions in question are non-Gaussianities (NG) of primordial density perturbations. We compute persistence diagrams and derived statistics for simulations of dark matter halos with Gaussian and non-Gaussian initial conditions. For computational reasons and to make contact with experimental observations, our pipeline computes persistence in sub-boxes of full simulations and simulations are subsampled to uniform halo number. We use simulations with large NG ($f_{\rm NL}^{\rm loc}=250$) as templates for identifying data with mild NG ($f_{\rm NL}^{\rm loc}=10$), and running the pipeline on several cubic volumes of size $40~(\textrm{Gpc/h})^{3}$, we detect $f_{\rm NL}^{\rm loc}=10$ at $97.5\%$ confidence on $\sim 85\%$ of the volumes for our best single statistic. Throughout we benefit from the interpretability of topological features as input for statistical inference, which allows us to make contact with previous first-principles calculations and make new predictions.