论文标题
自我监督的深度学习阅读活动分类
Self-supervised Deep Learning for Reading Activity Classification
论文作者
论文摘要
阅读分析可以提供有关用户信心和习惯的重要信息,并可用于构建反馈以改善用户的阅读行为。缺乏标记的数据抑制了完全监督深度学习(DL)进行自动阅读分析的有效应用。在本文中,我们提出了一种自我监督的DL方法,用于阅读分析并在两个分类任务上进行评估。我们首先在使用电学摄影(EOG)眼镜数据集的四级分类任务上评估了提议的自我监督的DL方法,然后使用眼神传播数据集对多项选择问题答案(MCQ)的答案进行置信度估算的两类分类任务进行评估。完全监督的DL和支持向量机(SVM)用于比较提出的自我监管的DL方法的性能。结果表明,对于这两个任务,提出的自我监督的DL方法优于全面监督的DL和SVM,尤其是在培训数据稀缺时。该结果表明,提出的自我监督的DL方法是阅读分析任务的卓越选择。这项研究的结果对于告知自动阅读分析平台的设计和实施至关重要。
Reading analysis can give important information about a user's confidence and habits and can be used to construct feedback to improve a user's reading behavior. A lack of labeled data inhibits the effective application of fully-supervised Deep Learning (DL) for automatic reading analysis. In this paper, we propose a self-supervised DL method for reading analysis and evaluate it on two classification tasks. We first evaluate the proposed self-supervised DL method on a four-class classification task on reading detection using electrooculography (EOG) glasses datasets, followed by an evaluation of a two-class classification task of confidence estimation on answers of multiple-choice questions (MCQs) using eye-tracking datasets. Fully-supervised DL and support vector machines (SVMs) are used to compare the performance of the proposed self-supervised DL method. The results show that the proposed self-supervised DL method is superior to the fully-supervised DL and SVM for both tasks, especially when training data is scarce. This result indicates that the proposed self-supervised DL method is the superior choice for reading analysis tasks. The results of this study are important for informing the design and implementation of automatic reading analysis platforms.