论文标题

自我裁判截止组织学中弱和强烈监督之间的差距

Self-Supervision Closes the Gap Between Weak and Strong Supervision in Histology

论文作者

Dehaene, Olivier, Camara, Axel, Moindrot, Olivier, de Lavergne, Axel, Courtiol, Pierre

论文摘要

将机器学习应用于组织病理学的最大挑战之一是薄弱的监督:全扫描图像具有数十亿像素,但通常只有一个全球标签。因此,使用领域专家的其他局部注释,艺术的状态依赖于强烈监督的模型培训。但是,在没有详细注释的情况下,大多数弱监督的方法取决于在影像网上预先训练的冷冻特征提取器。我们将其确定为关键弱点,并建议使用Moco V2(一种最近的自我监督学习算法)对组织学图像进行培训内域提取器。对Camelyon16和TCGA的实验结果表明,所提出的提取器的表现极大地优于其成像网对应物。特别是,我们的结果将Camelyon16上的弱监督状态从91.4%提高到98.7%的AUC,从而缩小了差距,并以强烈的监督模型达到99.3%的AUC。通过这些实验,我们证明了通过自学学习训练的功能提取器可以作为置换式替代方法,以显着改善组织学中现有的机器学习技术。最后,我们表明,学到的嵌入空间表现出组织结构的生物学意义分离。

One of the biggest challenges for applying machine learning to histopathology is weak supervision: whole-slide images have billions of pixels yet often only one global label. The state of the art therefore relies on strongly-supervised model training using additional local annotations from domain experts. However, in the absence of detailed annotations, most weakly-supervised approaches depend on a frozen feature extractor pre-trained on ImageNet. We identify this as a key weakness and propose to train an in-domain feature extractor on histology images using MoCo v2, a recent self-supervised learning algorithm. Experimental results on Camelyon16 and TCGA show that the proposed extractor greatly outperforms its ImageNet counterpart. In particular, our results improve the weakly-supervised state of the art on Camelyon16 from 91.4% to 98.7% AUC, thereby closing the gap with strongly-supervised models that reach 99.3% AUC. Through these experiments, we demonstrate that feature extractors trained via self-supervised learning can act as drop-in replacements to significantly improve existing machine learning techniques in histology. Lastly, we show that the learned embedding space exhibits biologically meaningful separation of tissue structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源