论文标题
不确定的肺结核学习的元序序回归森林
Meta Ordinal Regression Forest For Learning with Unsure Lung Nodules
论文作者
论文摘要
基于深度学习的方法在肺结节的早期检测和分类中实现了有希望的表现,其中大多数丢弃了不确定的结节,并且只是处理二元分类 - 恶性与良性。最近,提出了一个不确定的数据模型(UDM),以通过将此问题提出为序数回归来整合那些不确定的结节,从而在传统的二元分类中表现出更好的性能。为了进一步探讨肺结核分类的序数关系,本文提出了一个元序列回归森林(MORF),该森林(MORF)改善了最新的序数回归方法,深层序数回归森林(DORF),并以三种主要方式进行了改善。首先,MORF可以通过充分利用深层功能来减轻预测的偏见,而Dorf需要在训练之前修复决策树的组成。其次,MORF具有一个新颖的分组特征选择(GFS)模块,可以重新采样决策树的分裂节点。最后,与GFS结合使用,Morf配备了基于元学习的加权方案,可以将GFS选择的特征映射到树木的重量上,而Dorf为所有树木分配了相等的权重。 LIDC-IDRI数据集的实验结果表明,比现有方法(包括最先进的Dorf)表现出了卓越的性能。
Deep learning-based methods have achieved promising performance in early detection and classification of lung nodules, most of which discard unsure nodules and simply deal with a binary classification -- malignant vs benign. Recently, an unsure data model (UDM) was proposed to incorporate those unsure nodules by formulating this problem as an ordinal regression, showing better performance over traditional binary classification. To further explore the ordinal relationship for lung nodule classification, this paper proposes a meta ordinal regression forest (MORF), which improves upon the state-of-the-art ordinal regression method, deep ordinal regression forest (DORF), in three major ways. First, MORF can alleviate the biases of the predictions by making full use of deep features while DORF needs to fix the composition of decision trees before training. Second, MORF has a novel grouped feature selection (GFS) module to re-sample the split nodes of decision trees. Last, combined with GFS, MORF is equipped with a meta learning-based weighting scheme to map the features selected by GFS to tree-wise weights while DORF assigns equal weights for all trees. Experimental results on the LIDC-IDRI dataset demonstrate superior performance over existing methods, including the state-of-the-art DORF.