论文标题
大脑协会:使用AI恢复和增强大脑功能
Brain Co-Processors: Using AI to Restore and Augment Brain Function
论文作者
论文摘要
脑部计算机界面(BCIS)使用解码算法来控制基于脑信号的假肢设备,以恢复损失功能。另一方面,计算机脑接口(CBI)(CBIS)使用编码算法将外部感觉信号转换为神经刺激模式,以恢复感觉或为闭环假体控制提供感觉反馈。在本文中,我们介绍了大脑协作者,即使用人工智能(AI)在统一框架中结合解码和编码的设备,以补充或增强大脑功能。大脑协调员可用于一系列应用,从诱导Hebbian可塑性进行脑损伤后的康复,再到复兴瘫痪的肢体和增强记忆力。一个关键的挑战是同时进行多通道神经解码和编码,以优化外部行为或与任务相关的目标。我们描述了一个新的框架,用于开发基于人工神经网络,深度学习和强化学习的大脑处理器。这些“神经协调员”允许与神经系统的成本功能进行联合优化,以实现所需的行为。通过将人工神经网络与其生物学对应相结合,神经协调员提供了一种恢复和增强大脑的新方法,以及用于大脑研究的新科学工具。我们通过讨论大脑协会者的潜在应用和道德意义来结束。
Brain-computer interfaces (BCIs) use decoding algorithms to control prosthetic devices based on brain signals for restoration of lost function. Computer-brain interfaces (CBIs), on the other hand, use encoding algorithms to transform external sensory signals into neural stimulation patterns for restoring sensation or providing sensory feedback for closed-loop prosthetic control. In this article, we introduce brain co-processors, devices that combine decoding and encoding in a unified framework using artificial intelligence (AI) to supplement or augment brain function. Brain co-processors can be used for a range of applications, from inducing Hebbian plasticity for rehabilitation after brain injury to reanimating paralyzed limbs and enhancing memory. A key challenge is simultaneous multi-channel neural decoding and encoding for optimization of external behavioral or task-related goals. We describe a new framework for developing brain co-processors based on artificial neural networks, deep learning and reinforcement learning. These "neural co-processors" allow joint optimization of cost functions with the nervous system to achieve desired behaviors. By coupling artificial neural networks with their biological counterparts, neural co-processors offer a new way of restoring and augmenting the brain, as well as a new scientific tool for brain research. We conclude by discussing the potential applications and ethical implications of brain co-processors.