论文标题

KATREC:知识意识到专业的顺序建议

KATRec: Knowledge Aware aTtentive Sequential Recommendations

论文作者

Amjadi, Mehrnaz, Taheri, Seyed Danial Mohseni, Tulabandhula, Theja

论文摘要

顺序推荐系统根据用户与平台的历史互动对动态偏好进行建模。尽管取得了最近的进步,但在这种系统中,用户的短期和长期行为进行建模是无聊和具有挑战性的。为了解决这个问题,我们提出了一种通过称为Katrec的知识图(知识意识到的顺序建议)增强的解决方案。 KATREC通过对用户进行建模相互作用的项目的顺序并通过知识图注意网络来利用先前存在的侧面信息来了解用户的短期和长期利益。我们的新知识图形增强的顺序推荐剂包含在实体级别的项目多关系,并且在项目级别的用户的动态序列。 KATREC通过考虑高阶连接并将其纳入用户喜好表示形式,在推荐下一个项目时将项目表示学习来改善项目表示的学习。三个公共数据集的实验表明,KatRec的表现优于最先进的建议模型,并证明了对时间和侧面信息进行建模以实现高质量建议的重要性。

Sequential recommendation systems model dynamic preferences of users based on their historical interactions with platforms. Despite recent progress, modeling short-term and long-term behavior of users in such systems is nontrivial and challenging. To address this, we present a solution enhanced by a knowledge graph called KATRec (Knowledge Aware aTtentive sequential Recommendations). KATRec learns the short and long-term interests of users by modeling their sequence of interacted items and leveraging pre-existing side information through a knowledge graph attention network. Our novel knowledge graph-enhanced sequential recommender contains item multi-relations at the entity-level and users' dynamic sequences at the item-level. KATRec improves item representation learning by considering higher-order connections and incorporating them in user preference representation while recommending the next item. Experiments on three public datasets show that KATRec outperforms state-of-the-art recommendation models and demonstrates the importance of modeling both temporal and side information to achieve high-quality recommendations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源