论文标题

二维拓扑半学中的散装对应关系:抗病毒边缘模式的转移矩阵研究

Bulk-edge correspondence in two-dimensional topological semimetals: A transfer matrix study of antichiral edge modes

论文作者

Mizoguchi, Tomonari, Koma, Tohru

论文摘要

我们研究拓扑半学的边缘模式,这些半学具有普通半学的能带结构,但可以以Chern数为特征。更具体地说,我们专注于Qi-wu-zhang型方形晶格模型和haldane型蜂窝模型,这两种模型均表现出抗病毒边缘模式,其波数据包在带状的两个平行边缘在相同的方向上传播。为了获得边缘模式的这些分析解决方案,我们应用了先前工作中开发的转移矩阵方法[phys。 Rev. B \ TextBf {101},014442(2020)]。结果,我们表明,对于模型参数的一定范围,散装对应关系被分解。更确切地说,当增加Qi-wu-zhang型模型的跳跃幅度的强度时,尽管非平凡的Chern数没有变化,但边缘模式突然消失了。在Haldane型模型中,对于改变模型参数,边缘模式不一定消失,而非平凡的Chern号也不会改变。但是,从价带到传导带的边缘模式的能谱流在某些模型参数下突然破裂。

We study edge modes in topological semimetals which have an energy band structure of ordinary semimetals but can be characterized by a Chern number. More specifically, we focus on a Qi-Wu-Zhang-type square-lattice model and a Haldane-type honeycomb model, both of which exhibit antichiral edge modes whose wave packets propagate in the same direction at both parallel edges of the strip. To obtain these analytical solutions of the edge modes, we apply the transfer matrix method which was developed in the previous work [Phys. Rev. B \textbf{101}, 014442 (2020)]. As a result, we show that the bulk-edge correspondence is broken down for a certain range of the model parameters. More precisely, when increasing the strength of a hopping amplitude of the Qi-Wu-Zhang-type model, the edge modes abruptly disappear, although the non-trivial Chern number does not change. In the Haldane-type model, for varying the model parameters, the edge modes do not necessarily disappear, and the non-trivial Chern number does not change. However, the energy spectral flows of the edge modes from the valence band to the conduction band are abruptly broken at a certain set of the model parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源