论文标题
Melpuf:低离顶IC身份验证的逻辑中的内存PUF结构
MeLPUF: Memory-in-Logic PUF Structures for Low-Overhead IC Authentication
论文作者
论文摘要
物理上无统治的功能(PUF)用于在实现频谱上保护从现场可编程门阵列(FPGA)到芯片(SOCS)系统的电子设备。但是,现有的PUF实施通常会遭受一个或多个重大的缺陷:(1)大量设计开销; (2)难以根据应用程序特定要求进行配置和集成; (3)模型构建攻击的脆弱性; (4)芯片特定区域的空间位置。这些因素限制了它们在各种应用中使用的设计的身份验证中的应用。在这项工作中,我们提出了Melpuf:内存中的PUF;一个低空的,分布式的PUF,它利用设计中现有的逻辑门来创建逻辑电路中的交叉耦合逆变器(即存储器单元)作为熵源。它利用这些存储器单元的电源状态为熵源,以生成设备特定的独特指纹。专用的控制信号控制着这些按需记忆单元。它们可以分散在设计的组合逻辑上,以实现分布式身份验证。它们也可以使用标准逻辑合成工具合成,以满足目标区域,功率和性能限制。我们使用FPGA硅(TSMC 55NM工艺)评估了通过电路级模拟和实验测量评估Melpuf特征的质量。我们的分析表明,在产生适度的开销的同时,在独特性,随机性和鲁棒性方面,PUF的高质量。我们通过从多个存储单元中汇总加电状态,从而创建长度不同的PUF签名或数字标识符来进一步证明MELPUF的可扩展性。此外,我们建议可以利用的优化技术进一步提高梅尔普夫的性能。
Physically Unclonable Functions (PUFs) are used for securing electronic devices across the implementation spectrum ranging from Field Programmable Gate Array (FPGA) to system on chips (SoCs). However, existing PUF implementations often suffer from one or more significant deficiencies: (1) significant design overhead; (2) difficulty to configure and integrate based on application-specific requirements; (3) vulnerability to model-building attacks; and (4) spatial locality to a specific region of a chip. These factors limit their application in the authentication of designs used in diverse applications. In this work, we propose MeLPUF: Memory-in-Logic PUF; a low-overhead, distributed PUF that leverages the existing logic gates in a design to create cross-coupled inverters (i.e., memory cells) in a logic circuit as an entropy source. It exploits these memory cells' power-up states as the entropy source to generate device-specific unique fingerprints. A dedicated control signal governs these on-demand memory cells. They can be dispersed across the combinational logic of a design to achieve distributed authentication. They can also be synthesized with a standard logic synthesis tool to meet the target area, power, and performance constraints. We evaluate the quality of MeLPUF signatures with circuit-level simulations and experimental measurements using FPGA silicon (TSMC 55nm process). Our analysis shows the high quality of the PUF in terms of uniqueness, randomness, and robustness while incurring modest overhead. We further demonstrate the scalability of MeLPUF by aggregating power-up states from multiple memory cells, thus creating PUF signatures or digital identifiers of varying lengths. Additionally, we suggest optimization techniques that can be leveraged to boost the performance of MeLPUF further.