论文标题

征费噪声引起的自我引起的随机共振在回忆神经元中

Levy noise-induced self-induced stochastic resonance in a memristive neuron

论文作者

Yamakou, Marius E., Tran, Tat Dat

论文摘要

自我诱导的随机共振(SISR)是一种微妙的共振机制,需要在可激发系统的随机时间和确定性时间尺度之间达到非平凡的缩放限制,从而导致极限周期行为的出现,而极限循环行为没有噪声。关于神经系统中SISR的所有先前研究仅考虑了理想化的高斯白噪声。此外,这些研究忽略了神经细胞的一个电生理方面:其回忆特性。在本文中,首先,我们表明,在令人兴奋的政权中,征税时间尺度的渐近匹配(遵循幂律,与遵循克莱默斯法的高斯噪声不同)和确定性的时间表(由单数参数控制)也可以诱导强SISR。此外,这表明,征税噪声引起的SISR程度并不总是高于高斯噪声的SISR程度。其次,我们表明,对于两种类型的噪声,神经元的两个回忆特性对SISR的程度具有相反的影响:反馈增益参数越强,可以控制膜电位的调制,而磁通量越弱,反馈增益参数越弱,可以控制磁性磁通的饱和度,而SISR的程度越高。最后,我们表明,对于两种类型的噪声,回忆性神经元中的SISR程度总是比非同步神经元更高。我们的结果可以找到在设计在嘈杂制度中运行的神经形态电路方面的应用。

Self-induced stochastic resonance (SISR) is a subtle resonance mechanism requiring a nontrivial scaling limit between the stochastic and the deterministic timescales of an excitable system, leading to the emergence of a limit cycle behavior which is absent without noise. All previous studies on SISR in neural systems have only considered the idealized Gaussian white noise. Moreover, these studies have ignored one electrophysiological aspect of the nerve cell: its memristive properties. In this paper, first, we show that in the excitable regime, the asymptotic matching of the Levy timescale (that follows a power law, unlike Gaussian noise that follows Kramers law) and the deterministic timescale (controlled by the singular parameter) can also induce a strong SISR. In addition, it is shown that the degree of SISR induced by Levy noise is not always higher than that of Gaussian noise. Second, we show that, for both types of noises, the two memristive properties of the neuron have opposite effects on the degree of SISR: the stronger the feedback gain parameter that controls the modulation of the membrane potential with the magnetic flux and the weaker the feedback gain parameter that controls the saturation of the magnetic flux, the higher the degree of SISR. Finally, we show that, for both types of noises, the degree of SISR in the memristive neuron is always higher than in the non-memristive neuron. Our results could find applications in designing neuromorphic circuits operating in noisy regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源