论文标题

系统的误差耐受性多QUITEN尸体纠缠门

Systematic error tolerant multiqubit holonomic entangling gates

论文作者

Wu, Jin-Lei, Wang, Yan, Han, Jin-Xuan, Jiang, Yongyuan, Song, Jie, Xia, Yan, Su, Shi-Lei, Li, Weibin

论文摘要

量子自动化门具有内置的弹性对局部噪声,并提供了实施易于故障量子计算的有前途的方法。我们建议使用限制在光阵列或超导电路中的Rydberg原子来实现高保真的自然$(n+1)$ - 量子控制的门。我们确定该方案,推断出有效的多体汉密尔顿人,并确定多等级门的工作条件。独特的是,多Qualbit门不受系统误差的影响,即激光参数波动和动作dephasing,因为在操作过程中,$ n $控制原子在很大程度上仍然保留在非常稳定的Qubit空间中。我们表明,在适当的参数选择下,$ c_n $ - not门可以在给定的门时以$ n \ leq5 $的价格达到相同的保真度,并且可以通过最佳的脉冲工程进一步增强针对系统参数错误的栅极公差。在Rydberg原子的情况下,所提出的协议与基于Rydberg封锁或反块的典型方案本质上不同。我们的研究铺平了一条新的途径,以建造可靠的多码门,其中rydberg原子被困在光学阵列中或具有超导电路。它有助于当前使用被困的原子和可造成的超导设备开发可扩展量子计算的努力。

Quantum holonomic gates hold built-in resilience to local noises and provide a promising approach for implementing fault-tolerant quantum computation. We propose to realize high-fidelity holonomic $(N+1)$-qubit controlled gates using Rydberg atoms confined in optical arrays or superconducting circuits. We identify the scheme, deduce the effective multi-body Hamiltonian, and determine the working condition of the multiqubit gate. Uniquely, the multiqubit gate is immune to systematic errors, i.e., laser parameter fluctuations and motional dephasing, as the $N$ control atoms largely remain in the much stable qubit space during the operation. We show that $C_N$-NOT gates can reach same level of fidelity at a given gate time for $N\leq5$ under a suitable choice of parameters, and the gate tolerance against errors in systematic parameters can be further enhanced through optimal pulse engineering. In case of Rydberg atoms, the proposed protocol is intrinsically different from typical schemes based on Rydberg blockade or antiblockade. Our study paves a new route to build robust multiqubit gates with Rydberg atoms trapped in optical arrays or with superconducting circuits. It contributes to current efforts in developing scalable quantum computation with trapped atoms and fabricable superconducting devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源