论文标题

与C-RAN中低分辨率信号处理的大规模MU-MIMO系统的关节AGC和接收器设计

Joint AGC and Receiver Design for Large-Scale MU-MIMO Systems Using Low-Resolution Signal Processing in C-RANs

论文作者

Cunha, T., de Lamare, R. C., Ferreira, T. N., Landau, L. T. N.

论文摘要

大规模多用户多输入多输出(MU-MIMO)系统和云无线电访问网络(C-RAN)被认为是无线网络第五代(5G)的有前途的技术。在这些技术中,低分辨率类似于数字转换器(ADC)的使用是能源效率和遵守约束的领先链路的关键。很少有位的处理信号意味着可观的性能损失,因此可以补偿量化失真的技术是基本的。在无线系统中,自动增益控制(AGC)先于ADC调整输入信号级别,以减少量化的影响。在这项工作中,我们提出了在远程无线电头(RRHS)中起作用的AGC的联合优化,以及基于最小平方误差(MMSE)的低分辨率意识(LRA)线性接收过滤器,该过滤器在云单元(CU)中起作用,用于大规模的MU-MIMO系统,该系统具有大规模的MU-MIMO系统。我们基于拟议的关节AGC和LRA MMSE(AGC-LRA-MMSE)方法开发线性和连续的干扰取消(SIC)接收器。还对可实现的总和率以及计算复杂性研究进行了分析。仿真表明,拟议的AGC-LRA-MMSE设计可在现有技术方面的位错误率和可实现的信息速率方面取得了可观的收益。

Large-scale multi-user multiple-input multiple-output (MU-MIMO) systems and cloud radio access networks (C-RANs) are considered promising technologies for the fifth generation (5G) of wireless networks. In these technologies, the use of low-resolution analog-to-digital converters (ADCs) is key for energy efficiency and for complying with constrained fronthaul links. Processing signals with few bits implies a significant performance loss and, therefore, techniques that can compensate for quantization distortion are fundamental. In wireless systems, an automatic gain control (AGC) precedes the ADCs to adjust the input signal level in order to reduce the impact of quantization. In this work, we propose the joint optimization of the AGC, which works in the remote radio heads (RRHs), and a low-resolution aware (LRA) linear receive filter based on the minimum mean square error (MMSE), which works in the cloud unit (CU), for large-scale MU-MIMO systems with coarsely quantized signals. We develop linear and successive interference cancellation (SIC) receivers based on the proposed joint AGC and LRA MMSE (AGC-LRA-MMSE) approach. An analysis of the achievable sum rates along with a computational complexity study is also carried out. Simulations show that the proposed AGC-LRA-MMSE design provides substantial gains in bit error rates and achievable information rates over existing techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源