论文标题

对话系统的数据效率方法

Data-Efficient Methods for Dialogue Systems

论文作者

Shalyminov, Igor

论文摘要

对话用户界面(CUI)在日常生活中已普遍存在,以消费者为中心的产品(如Siri和Alexa或以业务为导向的解决方案)。深度学习是对话系统最近的许多突破的基础,但需要大量的培训数据,通常由专家注释。经过较小的数据培训,这些方法最终严重缺乏鲁棒性(例如,出现和跨域输入),并且通常只有太少的概括能力。在本文中,我们通过引入一系列从最小数据培训强大的对话系统的方法来解决上述问题。首先,我们从数据效率的角度研究了两种对话的正交方法:基于语言知情和基于机器学习的方法。我们概述了使用两种方法获得数据效率解决方案的步骤。然后,我们介绍了两个数据效率模型,以实现对话响应生成:基于潜在变量对话表示的对话知识传输网络和混合生成 - 回归变压器模型(在DSTC 8快速域适应任务中排名第一)。接下来,我们解决了最小数据的鲁棒性问题。因此,提出了一个基于多任务LSTM的模型,以用于域总突发性检测。对于室外输入的问题,我们提出了转弯辍学,这是一种仅使用内域数据的异常检测的数据增强技术,并引入了自动编码器功能增强模型,以进行有效训练,并使用转向辍学。最后,我们专注于社交对话,并引入了一种神经模型,用于在Alana中使用的社交对话中的响应排名,Alana是Amazon Alexa 2017和2018的第三名获奖者。我们采用了一种新颖的技术来预测对话长度作为主要排名目标,并表明这种方法在匹配数据效率方面基于评级的对方,同时在效果符合数据效率方面可以提高对话。

Conversational User Interface (CUI) has become ubiquitous in everyday life, in consumer-focused products like Siri and Alexa or business-oriented solutions. Deep learning underlies many recent breakthroughs in dialogue systems but requires very large amounts of training data, often annotated by experts. Trained with smaller data, these methods end up severely lacking robustness (e.g. to disfluencies and out-of-domain input), and often just have too little generalisation power. In this thesis, we address the above issues by introducing a series of methods for training robust dialogue systems from minimal data. Firstly, we study two orthogonal approaches to dialogue: linguistically informed and machine learning-based - from the data efficiency perspective. We outline the steps to obtain data-efficient solutions with either approach. We then introduce two data-efficient models for dialogue response generation: the Dialogue Knowledge Transfer Network based on latent variable dialogue representations, and the hybrid Generative-Retrieval Transformer model (ranked first at the DSTC 8 Fast Domain Adaptation task). Next, we address the problem of robustness given minimal data. As such, propose a multitask LSTM-based model for domain-general disfluency detection. For the problem of out-of-domain input, we present Turn Dropout, a data augmentation technique for anomaly detection only using in-domain data, and introduce autoencoder-augmented models for efficient training with Turn Dropout. Finally, we focus on social dialogue and introduce a neural model for response ranking in social conversation used in Alana, the 3rd place winner in the Amazon Alexa Prize 2017 and 2018. We employ a novel technique of predicting the dialogue length as the main ranking objective and show that this approach improves upon the ratings-based counterpart in terms of data efficiency while matching it in performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源