论文标题

准线性机制中的非Quasi线性代理

Non-quasi-linear Agents in Quasi-linear Mechanisms

论文作者

Babaioff, Moshe, Cole, Richard, Hartline, Jason, Immorlica, Nicole, Lucier, Brendan

论文摘要

货币机制通常是在代理是准线性的假设下设计的,这意味着它们具有用于花钱的线性分离性。我们研究了非线性(特定于凸)对付款的代理参与为准线性剂设计的机制时的含义。我们首先表明,对于准线性买家而言,任何真实的机制对于从付款中具有非线性分离性的买家来说,都具有最佳的响应功能,其中每个出价者只需将她的每个潜在结果的价值缩减为固定因素,等于她的目标投资回报率(ROI)。我们称这种策略是最佳的。我们证明了NASH均衡的存在,在该平衡中,代理使用Roi Optimal策略用于一般分配问题。然后,我们是在在线市场的激励下,专注于同时投标的同时进行第二价格拍卖,并表明在这种情况下,所有Roi Optimal equilibria都达到了恒定的因素近似值,以实现适当的福利和收入基准。

Mechanisms with money are commonly designed under the assumption that agents are quasi-linear, meaning they have linear disutility for spending money. We study the implications when agents with non-linear (specifically, convex) disutility for payments participate in mechanisms designed for quasi-linear agents. We first show that any mechanism that is truthful for quasi-linear buyers has a simple best response function for buyers with non-linear disutility from payments, in which each bidder simply scales down her value for each potential outcome by a fixed factor, equal to her target return on investment (ROI). We call such a strategy ROI-optimal. We prove the existence of a Nash equilibrium in which agents use ROI-optimal strategies for a general class of allocation problems. Motivated by online marketplaces, we then focus on simultaneous second-price auctions for additive bidders and show that all ROI-optimal equilibria in this setting achieve constant-factor approximations to suitable welfare and revenue benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源