论文标题

一声动力学理论

One-shot dynamical resource theory

论文作者

Yuan, Xiao, Zeng, Pei, Gao, Minbo, Zhao, Qi

论文摘要

资源理论中的一个基本问题是研究对资源的操纵。专注于量子通道的一般动力学资源理论,我们在这里考虑了一张资源蒸馏和稀释的任务。对于任何统一渠道或纯状态准备渠道的目标,我们建立了一种通用策略,以确定在任何给定资源和目标之间转换速率的上限和下限。我们表明,速率与基于信道鲁棒性和通道假设测试熵的资源度量有关,并具有目标资源度量的正则化因子。当通道鲁棒性是有限的,并且目标资源崩溃到相同值时,该策略变得最佳。单发结果也适用于对通道的渐近平行操纵以获得渐近资源转换率。我们提供了几个动态资源的例子,包括纯度,经典能力,量子能力,不均匀性,连贯性和量子通道的纠缠。我们的结果适用于一般的动力学资源理论,该理论具有量子通信,耐故障量子计算和量子热力学中的潜在应用。

A fundamental problem in resource theory is to study the manipulation of the resource. Focusing on a general dynamical resource theory of quantum channels, here we consider tasks of one-shot resource distillation and dilution with a single copy of the resource. For any target of unitary channel or pure state preparation channel, we establish a universal strategy to determine upper and lower bounds on rates that convert between any given resource and the target. We show that the rates are related to resource measures based on the channel robustness and the channel hypothesis testing entropy, with regularization factors of the target resource measures. The strategy becomes optimal with converged bounds when the channel robustness is finite and measures of the target resource collapse to the same value. The single-shot result also applies to asymptotic parallel manipulation of channels to obtain asymptotic resource conversion rates. We give several examples of dynamical resources, including the purity, classical capacity, quantum capacity, non-uniformity, coherence, and entanglement of quantum channels. Our results are applicable to general dynamical resource theories with potential applications in quantum communication, fault-tolerant quantum computing, and quantum thermodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源