论文标题

非线性固体中的剪切声光束的双曲线框架

A hyperbolic framework for shear sound beams in nonlinear solids

论文作者

Berjamin, Harold, Destrade, Michel

论文摘要

在柔软的弹性固体中,当考虑到二次非线性和立方非线性时。在这里,我们考虑在空间上进行二维波场。我们提出了变量的更改,以将方程转换为偏微分方程的准线性一阶系统。然后,通过使用路径保守的Muscl-sher-oser有限体积方案来解决其数值分辨率,该方案非常适合减震波的计算。我们验证该方法针对分析溶液(绿色的功能,平面波)。结果突出了高斯剪切波梁中奇数谐波和二阶谐波的产生。

In soft elastic solids, directional shear waves are in general governed by coupled nonlinear KZK-type equations for the two transverse velocity components, when both quadratic nonlinearity and cubic nonlinearity are taken into account. Here we consider spatially two-dimensional wave fields. We propose a change of variables to transform the equations into a quasi-linear first-order system of partial differential equations. Its numerical resolution is then tackled by using a path-conservative MUSCL-Osher finite volume scheme, which is well-suited to the computation of shock waves. We validate the method against analytical solutions (Green's function, plane waves). The results highlight the generation of odd harmonics and of second-order harmonics in a Gaussian shear-wave beam.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源