论文标题
使用卷积神经网络的超声散射器密度分类通过利用补丁统计
Ultrasound Scatterer Density Classification Using Convolutional Neural Networks by Exploiting Patch Statistics
论文作者
论文摘要
定量超声(QUS)可以揭示有关组织特性(例如散射器密度)的关键信息。如果每个分辨率细胞的散射密度高于或低于10,则将组织分别视为完全发达的斑点(FDS)或低密度散射器(LDS)。通常,散射器密度已使用反向散射回声幅度的估计统计参数进行了分类。但是,如果贴片大小很小,则估计不准确。这些参数也高度依赖于成像设置。在本文中,我们提出了QUS的卷积神经网络(CNN)体系结构,并使用仿真数据进行训练。我们通过利用补丁统计信息作为其他输入通道来进一步提高网络性能。我们使用仿真数据,实验幻象和体内数据评估网络。我们还将我们提出的网络与不同的经典和深度学习模型进行了比较,并证明了其在具有不同散射器密度值的组织中的出色性能。结果还表明,所提出的网络能够使用不同的成像参数,而无需参考幻影。这项工作证明了CNN在超声图像中散射密度分类中的潜力。
Quantitative ultrasound (QUS) can reveal crucial information on tissue properties such as scatterer density. If the scatterer density per resolution cell is above or below 10, the tissue is considered as fully developed speckle (FDS) or low-density scatterers (LDS), respectively. Conventionally, the scatterer density has been classified using estimated statistical parameters of the amplitude of backscattered echoes. However, if the patch size is small, the estimation is not accurate. These parameters are also highly dependent on imaging settings. In this paper, we propose a convolutional neural network (CNN) architecture for QUS, and train it using simulation data. We further improve the network performance by utilizing patch statistics as additional input channels. We evaluate the network using simulation data, experimental phantoms and in vivo data. We also compare our proposed network with different classic and deep learning models, and demonstrate its superior performance in classification of tissues with different scatterer density values. The results also show that the proposed network is able to work with different imaging parameters with no need for a reference phantom. This work demonstrates the potential of CNNs in classifying scatterer density in ultrasound images.