论文标题
近距离和远场中的原始模型电解质:DFT的衰减长度和模拟
Primitive Model Electrolytes in the Near and Far Field: Decay Lengths from DFT and Simulations
论文作者
论文摘要
受到浓缩电解质中异常大衰减长度的最新实验观察的启发,我们重新审视了水性电解质水的限制原始模型(RPM)。我们使用经典密度函数理论(DFT)调查了与平面电极接触的RPM的一体离子密度密度曲线的渐近衰减长度,并将其与相应的两体相关系统的衰减长度进行比较,该衰减长度在先前的集成方程理论(IET)研究中获得的散装系统中的衰减长度。使用广泛的分子动力学(MD)模拟来补充DFT和IET预测。我们的DFT计算使用三种不同的(现有)方法在离子之间进行静电相互作用:一种基于库仑相互作用(MFC)的最简单的平均现场处理(MFC),而其他两个采用了平均球形近似(MSA)。 MSAC仅调用MSA散装直接相关函数,而MSAU还包含了MSA大量内部能量。尽管MSAU产生的曲线与近场中的MD模拟最吻合,但在远处,我们观察到衰减长度在IET,MSAC和MD模拟之间是一致的,而来自MFC和MSAU的衰减长度显着偏离。我们使用DFT计算了与表面力实验直接相关的溶剂化力。我们发现,其衰减长度既不是定性的,也不是在实验中测得的大衰减长度,并得出结论,原始模型无法解释后者。在表面力测量中发现的异常大衰减长度需要解释,而不是原始模型。
Inspired by recent experimental observations of anomalously large decay lengths in concentrated electrolytes, we revisit the Restricted Primitive Model (RPM) for an aqueous electrolyte. We investigate the asymptotic decay lengths of the one-body ionic density profiles for the RPM in contact with a planar electrode using classical Density Functional Theory (DFT), and compare these with the decay lengths of the corresponding two-body correlation functions in bulk systems, obtained in previous Integral Equation Theory (IET) studies. Extensive Molecular Dynamics (MD) simulations are employed to complement the DFT and IET predictions. Our DFT calculations incorporate electrostatic interactions between the ions using three different (existing) approaches: one based on the simplest mean field treatment of Coulomb interactions (MFC), whilst the other two employ the Mean Spherical approximation (MSA). The MSAc invokes only the MSA bulk direct correlation function whereas the MSAu also incorporates the MSA bulk internal energy. Although MSAu yields profiles that agree best with MD simulations in the near field, in the far field we observe that the decay lengths are consistent between IET, MSAc, and MD simulations, whereas those from MFC and MSAu deviate significantly. Using DFT we calculated the solvation force, which relates directly to surface force experiments. We find that its decay length is neither qualitatively nor quantitatively close to the large decay lengths measured in experiments and conclude that the latter cannot be accounted for by the primitive model. The anomalously large decay lengths found in surface force measurements require an explanation that lies beyond primitive models.