论文标题

超级善良:与pytorch上的图像上的自我监督学习

Super-Selfish: Self-Supervised Learning on Images with PyTorch

论文作者

Wagner, Nicolas, Mukhopadhyay, Anirban

论文摘要

Super-Selfish是一个易于使用的Pytorch框架,用于基于图像的自我监督学习。可以通过13种算法学习功能,从简单分类到更复杂的对比借口任务。该框架易于使用,并允许仅具有两行代码的任何Pytorch神经网络。同时,通过模块化设计选择来保持全部灵活性。可以在https://github.com/meclabtuda/super_sellish上找到该代码,并使用PIP安装Super-Selfish安装。

Super-Selfish is an easy to use PyTorch framework for image-based self-supervised learning. Features can be learned with 13 algorithms that span from simple classification to more complex state of theart contrastive pretext tasks. The framework is easy to use and allows for pretraining any PyTorch neural network with only two lines of code. Simultaneously, full flexibility is maintained through modular design choices. The code can be found at https://github.com/MECLabTUDA/Super_Selfish and installed using pip install super-selfish.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源